Mathematical Physics - II

Green's Function

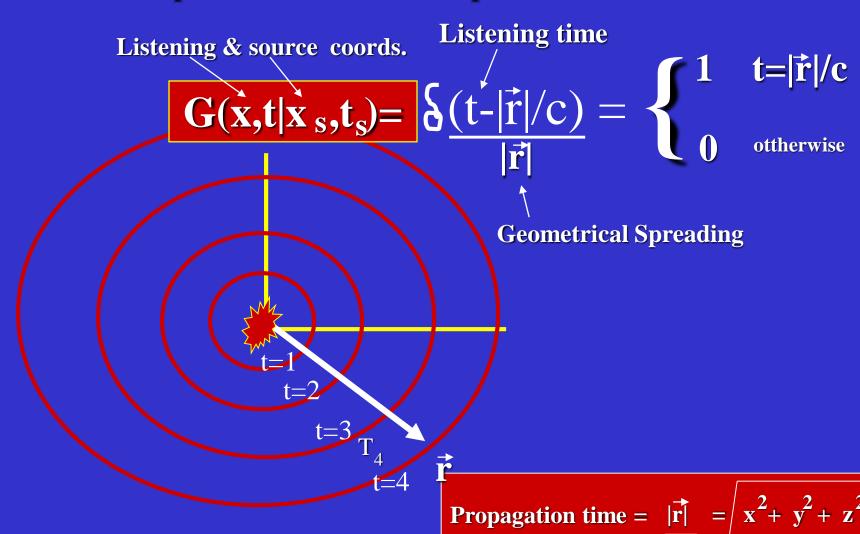
K. THAMILMARAN

Department of Car Dynamics
School of Physics, Bharathidasan University
Tiruchirapalli-620 024

maran.cnld@gamil.com

What is a Green's Function?

Answer: Impulse-Point Src. Response of Medium



What is a Green's Function?

Answer: Impulse-Point Src. Response of Medium

$$G(x,t|x_s,0) = \begin{cases} \frac{1}{|\vec{r}|} & \text{if } t = |\vec{r}|/c \\ 0 & \text{otherwise} \end{cases}$$

$$G(x|x_s) = \frac{e^{iwr/c}}{|\vec{r}|}$$
derivative

Wave in Heterogeneous Medium

$$G = Ae^{i(w\tau - wt)} \text{ satisfies } \ddot{G} = c^2 \nabla^2 G$$

$$except at origin$$

$$kr_i = (kc_i)r_i/c_j = w\tau$$

$$i$$

$$Time taken along ray segment$$

$$Valid at high w and smooth media$$

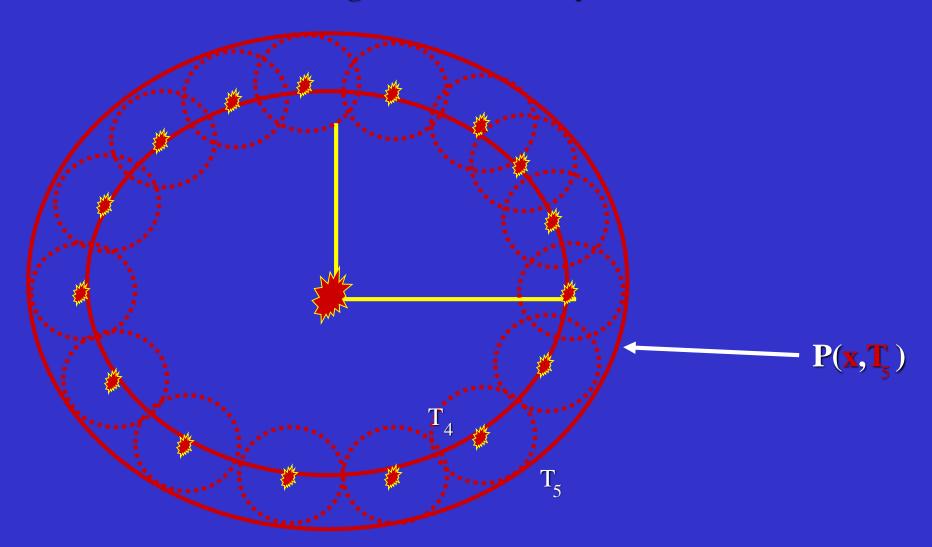
Outline

- Green's Functions
- Forward Modeling
- SRME
- Acausal GF, Stationarity, Reciprocity
- Interferometry
- Migration

What is Huygen's Principle?

Answer: Every pt. on a wavefront is a secondary src. pt.

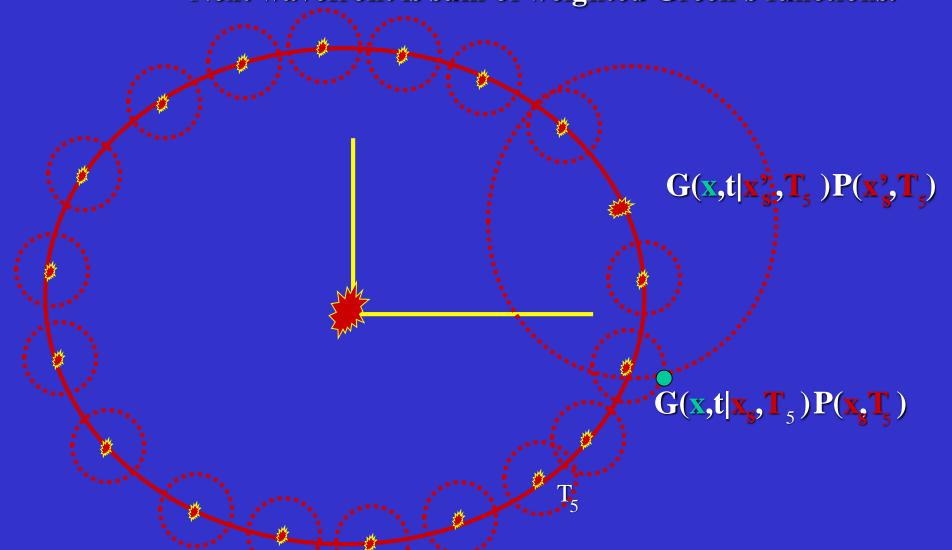
Common tangent kinematically defines next wavefront.



What is Huygen-Fresnel Principle?

Answer: Every pt. on a wavefront is a secondary src. pt.

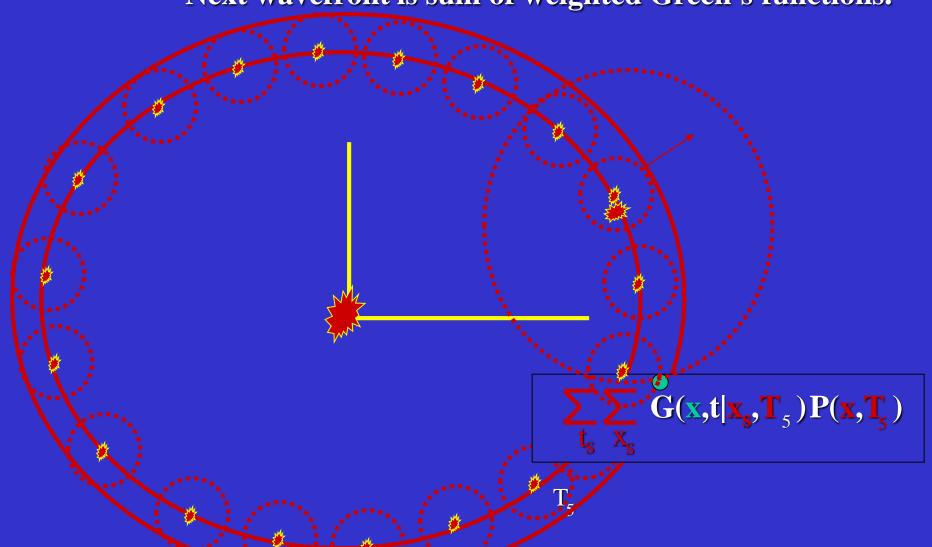
Next wavefront is sum of weighted Green's functions.

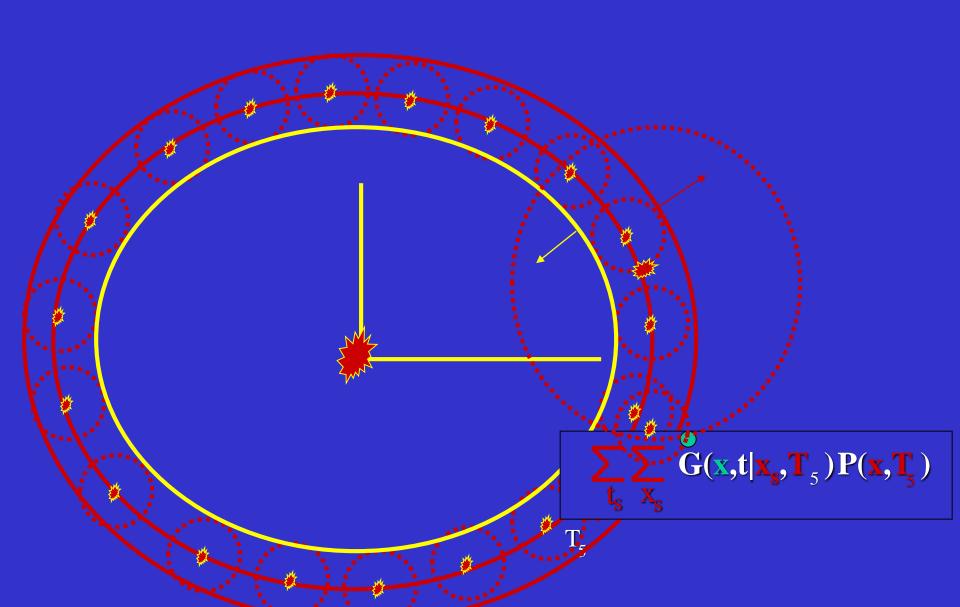


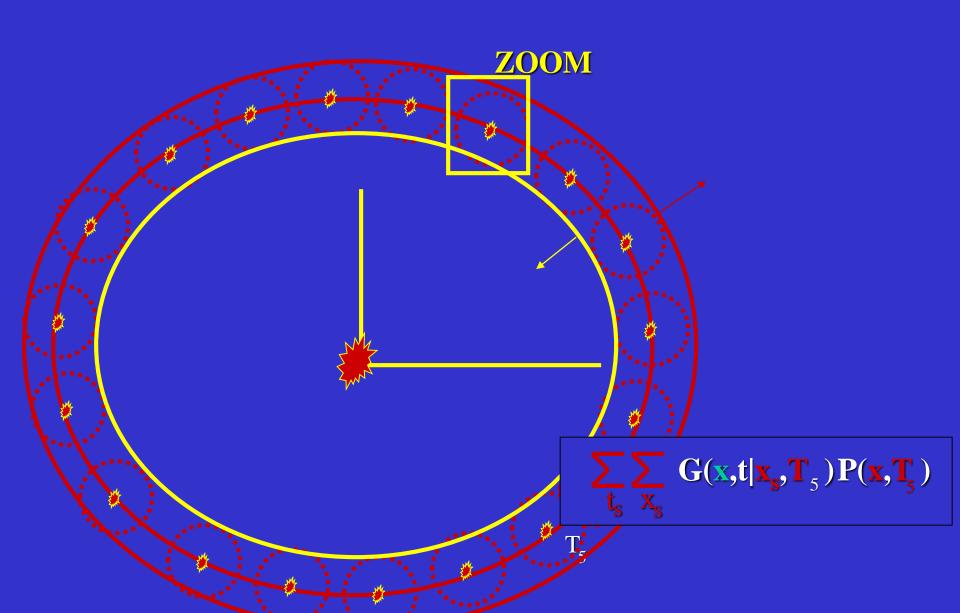
What is Huygen-Fresnel Principle?

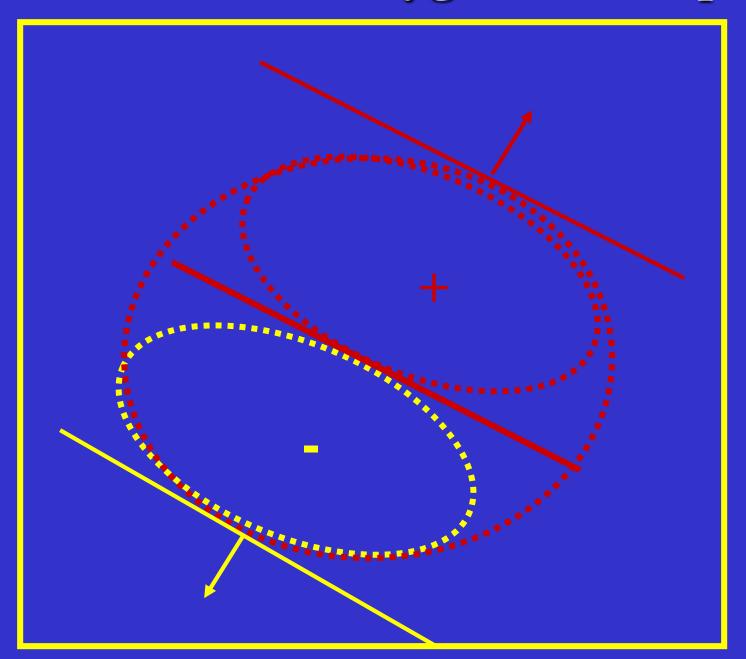
Answer: Every pt. on a wavefront is a secondary src. pt.

Next wavefront is sum of weighted Green's functions.









 $\frac{G(x,t|\mathbf{x}_{s}^{*},\mathbf{T}_{s})P(\mathbf{x}^{*},\mathbf{T}_{s})-G(x,t|\mathbf{x}_{s}^{*},\mathbf{T}_{s})P(\mathbf{x}^{*},\mathbf{T}_{s})}{dn}=PdG/dn$

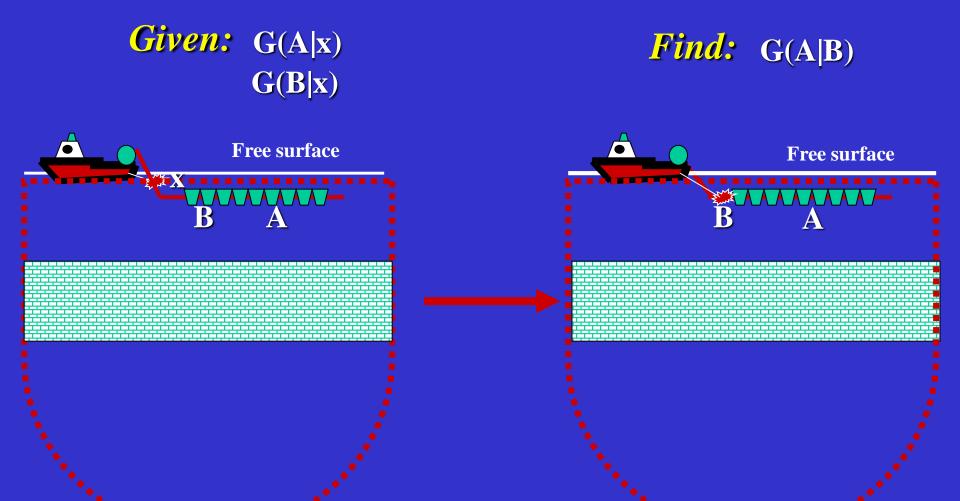
Green's Theorem Forward Modeling

$$P(x) = \oint \{G(x|x) \frac{dP(x)}{dn} - P(x) \frac{d}{dn}G(x|x)\} d^2x$$

Outline

- Green's Functions
- Forward Modeling
- SRME
- Acausal GF, Stationarity, Reciprocity
- Interferometry
- Migration

0. Define Problem



1. Helmholtz Eqns:

2. Multiply by G(A|x) and $P(B|x)^*$ and subtract

$$P(B|x)^* \nabla^2 G(A|x) - Q(A|x) \nabla^2 P(B|x)^* = Q(B-x)G(A|x) - Q(A-x)P(B|x)^*$$

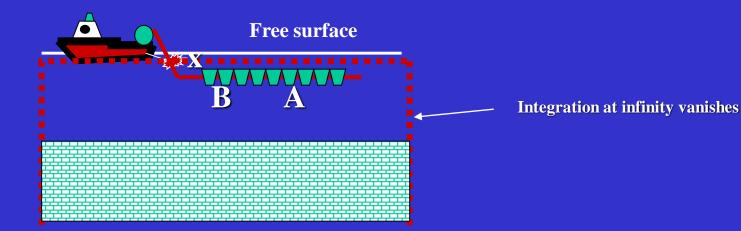
3. Integrate over a volume

4. Gauss's Theorem

$$(A|x) - G(A|x) - G(A|x)$$

$$P(B|x)$$
• n $d^2x = G(A|B) - P(B|A)$

G(A|B)



3. Integrate over a volume

4. Gauss's Theorem

Hence, the two integrands above are opposite and equal in far-field hi-freq. approximation

Layer interface

 $\mathbf{B} \wedge \mathbf{A}$

ń

If boundary is far away the major contribution is specular reflection

$$\frac{(\vec{B}-\vec{x})}{|\vec{B}-\vec{x}|}\vec{n} = -(\vec{A}-\vec{x})\vec{n}$$

$$2\int_{1^{St} \text{ interface}} P(B|x) \nabla G(A|x) \cdot \hat{n} dx = G(A|B) - P(B|A)$$

$$Far field \quad \hat{n} \cdot \hat{r} = 1$$

$$2ik \int_{1^{St} \text{ interface}} P(B|x)G(A|x)d^{2}x + P(B|A) = G(A|B)$$

$$Freeze B \text{ and hide it}$$

$$2ik \int_{1^{St} \text{ interface}} p(x)G(A|x)d^{2}x = -p(A) + g(A)$$
Remember, with src at 1

Reflected waves

Remember, g(A) is a $\frac{1}{2}$ space shot gather with src at B and rec at A

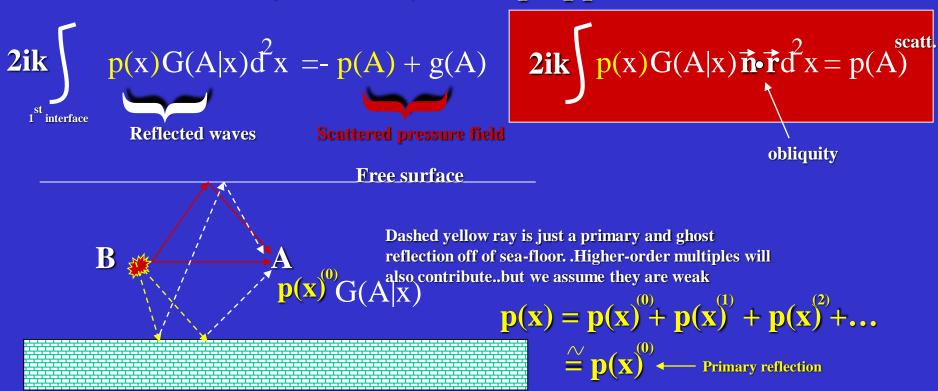
Free surface

Ghost direct-Total pressure

 $\mathbf{p}(\mathbf{x})^{(1)}\mathbf{G}(\mathbf{A}'|\mathbf{x})$ Dashed yellow ray is just a primary and ghost reflection off of sea-floor. .Higher-order multiples will $\mathbf{p}(\mathbf{x})^{(0)}G(\mathbf{A}|\mathbf{x})$ contribute..but we assume they are weak $p(x) = p(x)^{(0)} + p(x)^{(1)} + p(x)^{(2)} + ...$ $\stackrel{\sim}{=} p(x)^{(0)} \leftarrow Primary reflection$

Summary

Green's theorem, far-field, hi-freq. approx.



 If A=B and p(x)=cnst. Then we reduce to intuitive ZO modeling formula