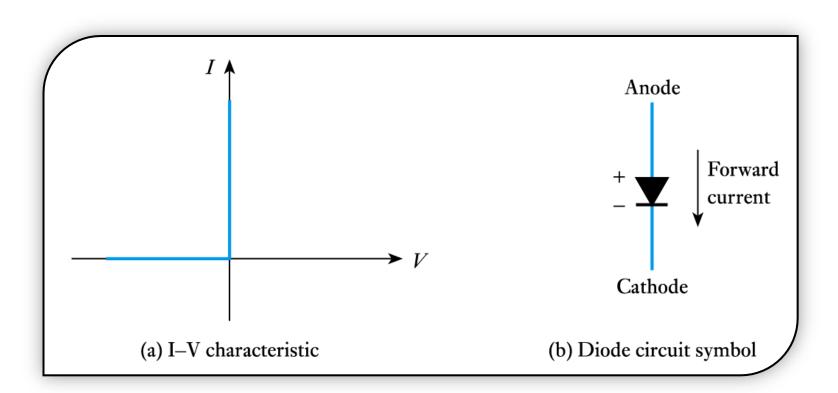
# Semiconductors Devices

Lecturers: Prof. K. Thamilmaran

#### **OBJECTIVES**

This course deals with an introduction to semiconductor Devices.

#### **SYLLABUS**


Semiconductors Devices: Metal - Semiconductor contacts (Ohmic and Schottky) - Schottky barrier diode - Zener diode - Varactor diode - Tunnel diode.

# Semiconductor Diodes

- Diodes
- Semiconductors
- pn Junctions
- Semiconductor Diodes
- **❖** Special-purpose Diodes

### Diodes

An ideal diode passing electricity in one direction but not the other



- One application of diodes is in rectification
  The example below shows a half-wave rectifier
- In practice, no real diode has ideal characteristics but semiconductor pn junctions make good diodes
- To understand such devices we need to look at some properties of materials



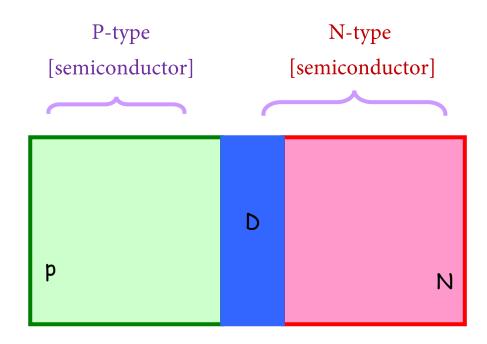
# **Electrical Properties of Solids**

#### **Conductors**

If an electric field is applied electrons will flow causing an electric current (at all temperatures above absolute zero).

e.g. copper or aluminium

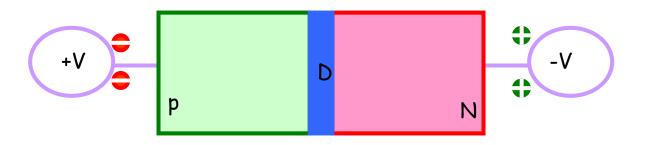
#### **Insulators**


Electrons are tightly bound to atoms so few can break free to conduct electricity

e.g. Glass, Wood, polythene

#### Semiconductors

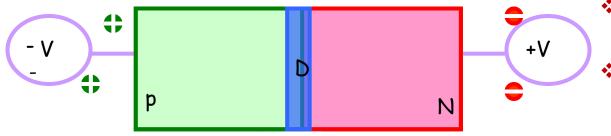
- Semiconductors have several properties that make them distinct from conductors and insulators
  - e.g. silicon ( $V_B = 0.7$ volts) or germanium ( $V_B = 0.3$  volts)
- At very low temperatures these have the properties of insulators
- The material warms up some electrons break free and can move about, and it takes on the properties of a conductor.


# PN Junction



Depletion region, barrier to free flow of current from P to N  $\rightarrow$  insulator

### PN Junction

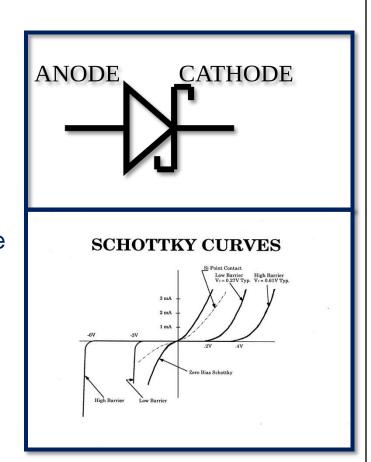

Forward Bias: Shrink depletion region, current dragged through the barrier



Once the difficulty of getting through the depletion region has been overcome, current can rise with applied voltage (Ohm's law)

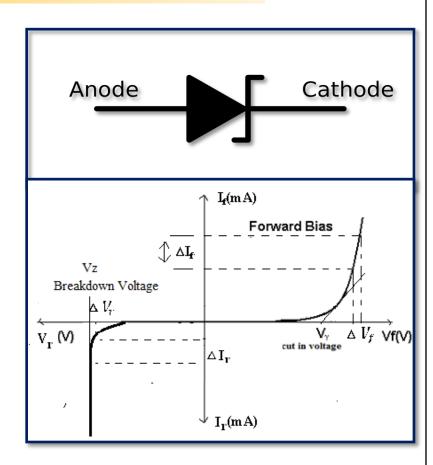
Reverse Bias:

Grow depletion region, current finds it more and more difficult to get through the barrier



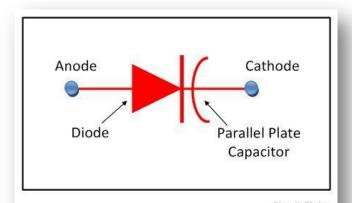

- Little current flows because barrier too high
- ♣ However increasing voltage further → high electric field
- ❖ Depletion region
  eventually breaks down
  → reverse current

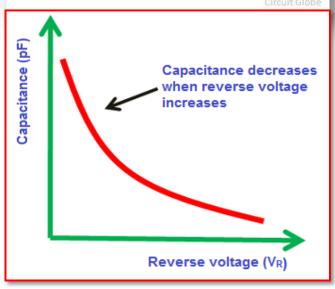
Reverse


# Schottky diode

- Junction between a layer of metal
  (e.g. aluminium) and a semiconductor
- Action relies only on majority charge carriers
- Much faster in operation than a pn junction diode
- A low forward voltage drop of about 0.25 V
- Used in the design of high-speed logic gates

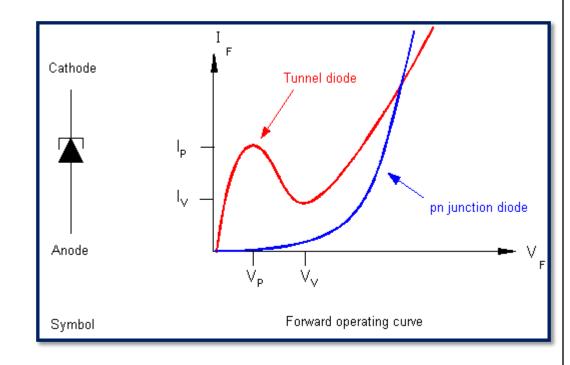



#### Zener diodes


- The relatively constant reverse breakdown voltage to produce a voltage reference
- lacktriangledark Breakdown voltage is called the Zener voltage,  $V_{z}$
- Output voltage of circuit shown is equal to  $V_Z$  despite variations in input voltage V
- A resistor is used to limit the current in the diode



## Varactor diode (Varicap Diode)


- A reversed-biased diode has two conducting
  regions separated by an insulating depletion region
- Variations in the reverse bias voltage change the width of the depletion layer and hence the capacitance
- This produces a voltage dependent capacitor
- These are used in applications such as
  automatic tuning circuits





#### Tunnel diodes

- High doping levels produce a very thin depletion layer which permits 'tunnelling' of charge carriers
- Results in a characteristic with a negative resistance region



 Used in high - frequency oscillators, where they can be used to 'cancel out' resistance in passive components

# **Key Points**

- Diodes allow current to flow in only one direction
- At low temperatures semiconductors act like insulators
- At higher temperatures they begin to conduct
- ❖ Doping of semiconductors leads to the production of p-type and n-type materials
- ❖ A junction between p type and n type semiconductors has the properties of a diode
- Silicon semiconductor diodes approximate the behaviour of ideal diodes but have a conduction voltage of about 0.7 V and germanium 0.3 V
- There are also a wide range of special purpose diodes
- Diodes are used in a range of applications