EULER METHOD

S. Rajasekar

School of Physics
Bharathidasan University
Tiruchirapalli - 620 024
email: rajasekar@cnld.bdu.ac.in
srj.bdu@gmail.com

Basic Idea of Numerical Integration

The basic idea of any numerical method of solving the initial value problem is the following. For simplicity consider

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \dot{x} = f(x, t). \tag{1}$$

Suppose it is desired to find the solution of Eq.(1) for $t \in [1, b]$ with $x(a) = x_0$.. The interval [a, b] is divided into m subintervals by the points $t_0 = a < t_1 = a + h < t_2 = a + 2h < \cdots < t_m = b$ where h = (b - a)/m. We can write $t_n = a + nh$, $n = 0, 1, \cdots, m$. The points t_n are called grid points and h is called a step-size. The exact solution $x(t_n)$ is approximated by a number and is denoted as x_n . The sequency $x_0, x_1, \cdots x_m$ is called a numerical solution.

In general, the numerical solution x_{n+1} at time t_{n+1} is obtained from the formula

$$x_{n+1} = x_n + h\phi(x_n, x_{n-1}, \cdots, x_{n-k}, t_n, t_{n-1}, \cdots, t_{n-k}). \tag{2}$$

When k = 0

$$x_{n+1} = x_n + h\phi(x_n, t_n). (3)$$

The value of x_{n+1} is calculated using (x_n, t_n) only. In this case the method is called a single-step method. When k > 0 the method is a multi-step method. If the error in a method is (h^{N+1}) then it is called Nth order method.

Euler Method for First-Order Differential Equations

Some of the single-step methods are Euler method and Runge-Kutta method. Consider the first-order equation of the form

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \dot{x} = f(x, t). \tag{4}$$

Assume that the value of x(t) at $t=t_0$ is given and is denoted as x_0 . Suppose f(x,t) remains same during a time interval t_0 to $t_1=t_0+h$. Then integration of Eq.(4) from t_0 to t_1 gives

$$x(t)\big|_{t_0}^{t_1} = f(x_0, t_0) \int_{t_0}^{t_1} dt.$$

That is,

$$x(t_1) - x(t_0) = f(x_0, t_0)(t_1 - t_0).$$

With $h = t_1 - t_0$ we can rewrite the above equation as

$$x_1 = x_0 + hf(x_0, t_0), (5a)$$

$$t_1 = t_0 + h. ag{5b}$$

Euler Method for First-Order Differential Equations

If f(x,t) changes with time then

$$x_{1} = x_{0} + hf(x_{0}, t_{0}) + \frac{1}{2}h^{2}f'(c), \quad c \in [t_{0}, t_{1}]$$

$$= x_{0} + hf(x_{0}, t_{0}) + \frac{1}{2}h^{2}x''(c). \tag{6}$$

In general

$$x_{n+1} = x_n + hf(x_n, t_n), (7a)$$

$$t_{n+1} = t_n + h, \quad n = 0, 1, \cdots.$$
 (7b)

The above algorithm of determining x(t) from $x(t_0)$ is called Euler method.

For the equation dy/dx = f(y,x) introduce the change of variables $x \to t$ and $y \to x$ which gives dx/dt = f(x,t) for which the Euler formula is given by Eqs.(7).

Euler Method for Second-Order Differential Equations

For a second-order equation of the form

$$\dot{x} = f(x, y, t), \tag{8a}$$

$$\dot{y} = g(x, y, t) \tag{8b}$$

the Euler formula is

$$x_{n+1} = x_n + hf(x_n, y_n, t_n),$$
 (9a)

$$y_{n+1} = y_n + hg(x_n, y_n, t_n), \tag{9b}$$

$$t_{n+1} = t_n + h, \quad n = 0, 1, \cdots.$$
 (9c)

For the equation

$$\ddot{x} + G(x, \dot{x}, t) = 0 \tag{10}$$

we write it as

$$\dot{x} = y = f(x, y, t), \tag{11a}$$

$$\dot{y} = \ddot{x} = -G(x, y, t) = g(x, y, t).$$
 (11b)

Then the corresponding Euler formula is given by Eqs.(9).

Error Analysis

The error in the Euler formula in obtaining the solution from t_n to t_{n+1} referring to Eq.(6) is

$$E_n = \frac{1}{2}h^2 x''(c_n). (12)$$

This is the local truncation error. The global error in obtining the solution from $t_0=a$ to $t_m=b$ is

$$E = \sum_{n=1}^{m} E_{n}$$

$$= \frac{1}{2}h^{2} \sum_{n=1}^{m} x''(c_{n})$$

$$= \frac{1}{2}h \frac{(b-a)}{m} \sum_{n=1}^{m} x''(c_{n})$$

$$= \frac{1}{2}h \frac{(b-a)}{m} mx''(c)$$

$$= \frac{1}{2}h(b-a)x''(c) = O(h).$$
(13)

Examples

Consider the first-order equation $\dot{x} = -x + \sin t$, x(0) = 1. Calculate x(0.1) and x(0.2) by the Euler method with step size 0.1.

For the equation $\dot{x} = f(x, t)$ the Euler formula is

$$x_{n+1} = x_n + hf(x_n, t_n), (14a)$$

$$t_{n+1} = t_n + h. ag{14b}$$

Given:
$$f(x,t) = -x + \sin t$$
, $t_n = 0$, $x_n = x(0) = 1$, $h = 0.1$
 $t_{n+1} = t_n + h = 0.1$, $x_{n+1} = ?$

We find:

$$x(0.1) = x_{n+1} = 1 + 0.1 \times f(x_n = 1, t_n = 0) = 1 + 0.1 \times -1 = 0.9.$$

Next, determination of x(0.2) using x(0.1).

Given:
$$f(x,t) = -x + \sin t$$
, $t_n = 0.1$, $x_n = x(0.1) = 0.9$, $h = 0.1$ $t_{n+1} = t_n + h = 0.2$, $x_{n+1} = ?$

Example

We find:

$$x(0.2) = x_{n+1}$$

$$= 0.9 + 0.1 \times f(x_n = 0.9, t_n = 0.1)$$

$$= 0.9 + 0.1 \times -0.8001665$$

$$= 0.8199833.$$