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What is a curve fitting?

The general problem of construction of an appropriate mathematical equation which fit a

set of given data is called curve fitting. Let us assume that a set of data (xk, yk),

k = 1, 2, ..., n containing two variables is given. The goal of the curve fitting is to

determine a formula y = f(x). How does one choose an appropriate form of f(x)?

Usually, by inspecting the given data and the physical situation a particular form of f(x)

is chosen. For example, the data points in Fig. 1a appear to be varying linearly with x.

Therefore, the linear relation y = ax+ b can be tried.
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Figure 1: Data points y varying roughly (a) linearly and (b) nonlinearly with x.

For the data in Fig. 1b an exponential function y = beax is suitable. Methods are

available to determine the constants a and b.
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Method of Least-Squares

Let (xk, yk), k = 1, 2, ..., n be n sets of observations and it is required to make a fit to

the function
y = F (x, c1, c2, ..., cm) , (1)

where F is some function of x which depends linearly on the parameters {ci}. That is,

F = c1φ1(x) + c2φ2(x) + ...+ cmφm(x) , (2)

where {φi(x)} are a priory selected set of functions and {ci} are to be determined.

Normally, m is small compared with the number, n, of the data points. The functions

{φi(x)} may, for example, be simply x or xk or cos(x) and so on.
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Basic Idea

The basic idea of curve fitting is to choose the parameters ~c = {ci} in such a way that

the deviation error or the residuals ek given by

ek = yk − F (xk, ~c) , k = 1, 2, ..., n (3)

are minimum. In other words, the difference between the observed or given y and the

value of y calculated from the relation (1) to be determined is made as small as possible.

Here ek ’s can take both positive and negative values. In order to give equal weighage to

positive and negative ek ’s consider the root-mean-square (rms) error

Erms =

[

1

n

n
∑

k=1

e2k

]

1/2

. (4)

A best fit is then obtained by minimizing Erms.

From Eq. (4) it is clear that the Erms will be minimum if and only if the quantity

E(~c) =
n
∑

k=1

e2k (5)

is a minimum. Hence, the best curve fit to a set of data is that for which the sum of the

squares of the residuals is a minimum. This is known as least-squares criterion and the

resulting approximation F (x,~c) is called a least-squares approximation to the given data.
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Derivation of Equations for the

Unknowns {ci}

It is desired to find {ci} for which E(~c) given by Eq. (5) is a minimum. Recall that the

slope df(x)/dx = f ′(x) of a single variable function f(x) is zero at the minimum value

of f . A function f( ~X) of several variables is minimum when ∇f( ~X) = 0 where ∇ is the

gradient operator. Thus the necessary condition for the function E to be minimum is

∇E(~c) = 0 , (6)

where the gradient operator ∇ here takes the form

∇ =~i1
∂

∂c1
+~i2

∂

∂c2
+ ...+~im

∂

∂cm
(7)

with~ij ’s being unit vectors. Equation (6) is satisfied if and only if all the components of

∇E are identically zero: ∂E/∂ci = 0. That is,

∂E

∂ci
=

∂

∂ci

n
∑

k=1

[yk − F (xk, ~c)]
2 = 0, i = 1, 2, ...,m. (8)

From Eq. (2) one has ∂F/∂ci = φi. Therefore, Eqs. (8) become

−2
n
∑

k=1

[yk − F (xk, ~c)]φi (xk) = 0 . (9)
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Derivation of Equations for {ci}

Then using Eq.(3) in (9) one gets

n
∑

k=1

ekφi (xk) = 0 , i = 1, 2, ...,m. (10)

That is,

~e · ~Φi = 0 , i = 1, 2, ...,m (11)

where

~e = [e1, e2, ..., en]
T , ~Φi = [φi(x1), φi(x2), ..., φi(xm)] . (12)

Equation (11) implies that the error vector ~e, for all n, should be normal or orthogonal to

each of the n vectors ~Φi. Because of this, the m equations, namely Eqs.(9) are called

normal equations.
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Application to Straight-Line Fit

Now, consider how to make a linear or straight-line fit to a given set of n data. Essentially

the problem is to determine the values of the constants a and b in the function

y = f(x, a, b) = ax+ b . (13)

Simple formulas for a and b can be obtained by solving the normal equations of a and b.

From Eqs.(8) and (13) the normal equations are written as

∂E

∂a
=

∂

∂a

n
∑

k=1

(yk − axk − b)2 = 0 , (14a)

∂E

∂b
=

∂

∂b

n
∑

k=1

(yk − axk − b)2 = 0 . (14b)

Performing the partial derivatives in Eqs. (14) one has

−2
∑

(yk − axk − b)xk = 0 , (15a)

−2
∑

(yk − axk − b) = 0 , (15b)

where the suffices in the summations are dropped for simplicity.
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Application to Straight-Line Fit

Equations (15) can be rewritten as

a
∑

x2

k + b
∑

xk =
∑

xkyk , (16a)

a
∑

xk + nb =
∑

yk . (16b)

The above set of equations are linear in the unknowns a and b and can be easily solved.

The equation for a is obtained by multiplying Eq. (16a) by n, Eq. (16b) by
∑

xk and then

subtracting one from another. Similarly, equation for b is obtained by multiplying

Eq. (16a) by
∑

xk, Eq. (16b) by
∑

x2

k and then subtracting one from another. The

equations for a and b are obtained as

a =
n
∑

xkyk −
∑

xk
∑

yk

n
∑

x2

k − (
∑

xk)
2

, (17a)

b =

∑

x2

k

∑

yk −
∑

xk
∑

xkyk

n
∑

x2

k − (
∑

xk)
2

. (17b)
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Example

Find the least-squares straight-line fit for the data given in the following table.

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7

y 0.16 0.21 0.23 0.30 0.36 0.39 0.46

For the above data the values of x2

k, xkyk ,
∑

xk ,
∑

yk ,
∑

x2

k and
∑

xkyk are given in

the following table:

xk yk x2

k xkyk

0.1 0.16 0.01 0.016

0.2 0.21 0.04 0.042

0.3 0.23 0.09 0.069

0.4 0.30 0.16 0.120

0.5 0.36 0.25 0.180

0.6 0.39 0.36 0.234

0.7 0.46 0.49 0.322

∑

2.8 2.11 1.40 0.983
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Example

Now, from Eqs. (17) a and b are calculated as

a =
7× 0.983− 2.8× 2.11

7× 1.4− 2.8× 2.8
= 0.49643 ,

b =
1.4× 2.11− 2.8× 0.983

7× 1.4− 2.8× 2.8
= 0.10286 .

Thus the least-squares straight-line fit is

y = 0.49643x+ 0.10286 . (18)
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