CURVE FITTING

S. Rajasekar

School of Physics
Bharathidasan University
Tiruchirapalli - 620 024
email: rajasekar@cnld.bdu.ac.in
srj.bdu@gmail.com

What is a curve fitting?

The general problem of construction of an appropriate mathematical equation which fit a set of given data is called curve fitting. Let us assume that a set of data (x_k, y_k) , k = 1, 2, ..., n containing two variables is given. The goal of the curve fitting is to determine a formula y = f(x). How does one choose an appropriate form of f(x)? Usually, by inspecting the given data and the physical situation a particular form of f(x) is chosen. For example, the data points in Fig. 1a appear to be varying linearly with x. Therefore, the linear relation y = ax + b can be tried.

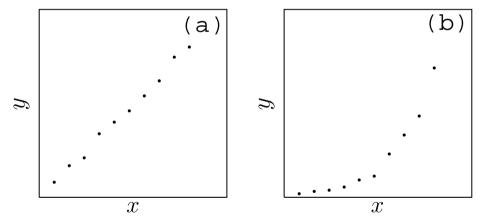


Figure 1: Data points y varying roughly (a) linearly and (b) nonlinearly with x.

For the data in Fig. 1b an exponential function $y = be^{ax}$ is suitable. Methods are available to determine the constants a and b.

Method of Least-Squares

Let (x_k, y_k) , k = 1, 2, ..., n be n sets of observations and it is required to make a fit to the function

$$y = F(x, c_1, c_2, ..., c_m),$$
 (1)

where F is some function of x which depends linearly on the parameters $\{c_i\}$. That is,

$$F = c_1 \phi_1(x) + c_2 \phi_2(x) + \dots + c_m \phi_m(x), \qquad (2)$$

where $\{\phi_i(x)\}$ are a priory selected set of functions and $\{c_i\}$ are to be determined. Normally, m is small compared with the number, n, of the data points. The functions $\{\phi_i(x)\}$ may, for example, be simply x or x^k or $\cos(x)$ and so on.

Basic Idea

The basic idea of curve fitting is to choose the parameters $\vec{c} = \{c_i\}$ in such a way that the deviation error or the residuals e_k given by

$$e_k = y_k - F(x_k, \vec{c}), \quad k = 1, 2, ..., n$$
 (3)

are minimum. In other words, the difference between the observed or given y and the value of y calculated from the relation (1) to be determined is made as small as possible. Here e_k 's can take both positive and negative values. In order to give equal weighage to positive and negative e_k 's consider the root-mean-square (rms) error

$$E_{\rm rms} = \left[\frac{1}{n} \sum_{k=1}^{n} e_k^2\right]^{1/2} . \tag{4}$$

A best fit is then obtained by minimizing $E_{\rm rms}$.

From Eq. (4) it is clear that the $E_{\rm rms}$ will be minimum if and only if the quantity

$$E(\vec{c}) = \sum_{k=1}^{n} e_k^2 \tag{5}$$

is a minimum. Hence, the best curve fit to a set of data is that for which the sum of the squares of the residuals is a minimum. This is known as least-squares criterion and the resulting approximation $F(x, \vec{c})$ is called a least-squares approximation to the given data.

Derivation of Equations for the Unknowns $\{c_i\}$

It is desired to find $\{c_i\}$ for which $E(\vec{c})$ given by Eq. (5) is a minimum. Recall that the slope $\mathrm{d}f(x)/\mathrm{d}x = f'(x)$ of a single variable function f(x) is zero at the minimum value of f. A function $f(\vec{X})$ of several variables is minimum when $\nabla f(\vec{X}) = 0$ where ∇ is the gradient operator. Thus the necessary condition for the function E to be minimum is

$$\nabla E(\vec{c}) = 0, \tag{6}$$

where the gradient operator ∇ here takes the form

$$\nabla = \vec{i}_1 \frac{\partial}{\partial c_1} + \vec{i}_2 \frac{\partial}{\partial c_2} + \dots + \vec{i}_m \frac{\partial}{\partial c_m}$$
 (7)

with \vec{i}_j 's being unit vectors. Equation (6) is satisfied if and only if all the components of ∇E are identically zero: $\partial E/\partial c_i=0$. That is,

$$\frac{\partial E}{\partial c_i} = \frac{\partial}{\partial c_i} \sum_{k=1}^n \left[y_k - F(x_k, \vec{c}) \right]^2 = 0, \quad i = 1, 2, ..., m.$$
 (8)

From Eq. (2) one has $\partial F/\partial c_i = \phi_i$. Therefore, Eqs. (8) become

$$-2\sum_{k=1}^{n} [y_k - F(x_k, \vec{c})] \phi_i(x_k) = 0.$$
 (9)

Derivation of Equations for $\{c_i\}$

Then using Eq.(3) in (9) one gets

$$\sum_{k=1}^{n} e_k \phi_i(x_k) = 0, \quad i = 1, 2, ..., m.$$
(10)

That is,

$$\vec{e} \cdot \vec{\Phi}_i = 0, \quad i = 1, 2, ..., m$$
 (11)

where

$$\vec{e} = [e_1, e_2, ..., e_n]^T$$
, $\vec{\Phi}_i = [\phi_i(x_1), \phi_i(x_2), ..., \phi_i(x_m)]$. (12)

Equation (11) implies that the error vector \vec{e} , for all n, should be normal or orthogonal to each of the n vectors $\vec{\Phi}_i$. Because of this, the m equations, namely Eqs.(9) are called normal equations.

Application to Straight-Line Fit

Now, consider how to make a linear or straight-line fit to a given set of n data. Essentially the problem is to determine the values of the constants a and b in the function

$$y = f(x, a, b) = ax + b$$
. (13)

Simple formulas for a and b can be obtained by solving the normal equations of a and b. From Eqs.(8) and (13) the normal equations are written as

$$\frac{\partial E}{\partial a} = \frac{\partial}{\partial a} \sum_{k=1}^{n} (y_k - ax_k - b)^2 = 0, \qquad (14a)$$

$$\frac{\partial E}{\partial b} = \frac{\partial}{\partial b} \sum_{k=1}^{n} (y_k - ax_k - b)^2 = 0.$$
 (14b)

Performing the partial derivatives in Eqs. (14) one has

$$-2\sum (y_k - ax_k - b)x_k = 0, \qquad (15a)$$

$$-2\sum (y_k - ax_k - b) = 0, (15b)$$

where the suffices in the summations are dropped for simplicity.

Application to Straight-Line Fit

Equations (15) can be rewritten as

$$a\sum x_k^2 + b\sum x_k = \sum x_k y_k, \qquad (16a)$$

$$a\sum x_k + nb = \sum y_k. (16b)$$

The above set of equations are linear in the unknowns a and b and can be easily solved. The equation for a is obtained by multiplying Eq. (16a) by n, Eq. (16b) by $\sum x_k$ and then subtracting one from another. Similarly, equation for b is obtained by multiplying Eq. (16a) by $\sum x_k$, Eq. (16b) by $\sum x_k^2$ and then subtracting one from another. The equations for a and b are obtained as

$$a = \frac{n\sum x_k y_k - \sum x_k \sum y_k}{n\sum x_k^2 - (\sum x_k)^2}, \qquad (17a)$$

$$b = \frac{\sum x_k^2 \sum y_k - \sum x_k \sum x_k y_k}{n \sum x_k^2 - (\sum x_k)^2}.$$
 (17b)

Example

Find the least-squares straight-line fit for the data given in the following table.

						0.6	
y	0.16	0.21	0.23	0.30	0.36	0.39	0.46

For the above data the values of x_k^2 , $x_k y_k$, $\sum x_k$, $\sum y_k$, $\sum x_k^2$ and $\sum x_k y_k$ are given in the following table:

	x_k	y_k	x_k^2	$x_k y_k$
	0.1	0.16	0.01	0.016
	0.2	0.21	0.04	0.042
	0.3	0.23	0.09	0.069
	0.4	0.30	0.16	0.120
	0.5	0.36	0.25	0.180
	0.6	0.39	0.36	0.234
	0.7	0.46	0.49	0.322
\sum	2.8	2.11	1.40	0.983

Example

Now, from Eqs. (17) a and b are calculated as

$$a = \frac{7 \times 0.983 - 2.8 \times 2.11}{7 \times 1.4 - 2.8 \times 2.8} = 0.49643,$$

$$b = \frac{1.4 \times 2.11 - 2.8 \times 0.983}{7 \times 1.4 - 2.8 \times 2.8} = 0.10286.$$

Thus the least-squares straight-line fit is

$$y = 0.49643x + 0.10286. (18)$$