VOID FUNCTION IN C++

S. Rajasekar

School of Physics
Bharathidasan Universit
Tiruchirapalli - 620 02
email: rajasekar@cnld.bdu.ac.in
sr].bdu @ gmail.com

—p. 1/11

Definition

When a program is large it will be difficult to understand it.
For simplicity, easy understanding and minimize the length
of a program, the job of the program can be divided into a
number of subtasks. These subtasks may be performed
independently in separate subprograms. Then the
subprograms can be linked together to do the entire job.
For example, we want to write a program to compute a
mean value, variance, moments and probability distribution
of a set of numbers. We can write separate programs
(subprograms) for each of these tasks and then combine
them into a single program. These subprograms are call

void functions.
—n.2/11

General Format

The name of a void function cannot assume a value. However, any number of values
calculated in the void function subprogram can be brought into the main program. A
main program itself can be written as a void function. The following is the general form of
a program with a void function.

—p. 3/11

General Format

In the above name is the name of the void
function and arguments are the list of variables.
The task of a void subprogram is specified
usually at the end of the program.

—p. 4/11

Write a program using a void function for arranging the numbers a and b in ascending
order.
// Program for arranging a and b in ascending order using a void function
#include (iostream.h)
#include (math.h)
#include (conio.h)
void ascending (double a, double b);
main ()
{
double a, b;
cin>>a>>Db;
ascending (a, b);
return O;

}

void ascending (double a, double b)

{

double tem;
if (a>b)
—1.5/11

{

tem = a;
a=>b;
b =tem:;
}
cout<<a ="<<a<<“b ="<<b<<endl:
}
Input 5 3
Output 3 5

—p.6/11

Void function with passing-by-value and

passing-by-reference

Consider the following program for aranging the two numbers a and b in ascending
order: // Program for arranging a and b in ascending order using a void function
#include (iostream.h)
#include {math.h)
#include (conio.h)
void ascending (double a, double b);
main ()
{
double a, b;
cin>>a>>b;
ascending (a, b);
cout<<“a ="<<a<<"b ="<<b<<endl
return O;

}

void ascending (double a, double b)

{

double tem;
if (a>Db)
—n.7/11

Void function with passing-by-value

{

tem = a;
a=>b;
b =tem:;

}

cout<<a ="<<a<<“b ="<<b<<endl:

| 7

In the above program for the two numbers a=5 and b=3 the output statement in the void
function prints the result as

a=3 Db=5

which is correct. While the cout in the main program prints a=5 and b= 3. That is, the
changes happened to a and b in the void function subprogram are not transfered to the
main function. The changes happened to a and b are restricted to the void function only.
The values of a and b in the main program are unaltered. This means the variables a
and b are local variables to the void function. In the main function the variables a and b
are read-only-variables. This is known as pass-by-value mechanism.

—p. 8/11

Void function with passing-by-reference

Suppose we wish to update the values of a and b in the main program. This can be done
by passing the values by reference and is called passing-by-reference. To pass a value
of a variable by reference simply attach the ampersand symbol ‘&’ to the type specifier in
the function. In this case the argument is read-write instead of read only. Then any
change to the local variables in the void function subprogram will be passed to the
corresponding variables in the main program.
Example:
// Program for arranging a and b in ascending order using a void function
#include (iostream.h)
#include (math.h)
#include (conio.h)
void ascending (double &a, double &b);
main ()
{

double a, b;

cin>>a>>Db;

ascending (a, b);

cout<<“a ="<<a<<"b ="<<b<<endl;

—1n.9/11

return O;

}
void ascending (double &a, double &Db)

{
double tem;
if (a>Db)
{
tem = a;
a=Db;
b =tem;
}

}
Input 5 3

Qutput 3 5

Void function with passing-by-reference

—n. 10/11

Difference between passing-by-value and

passing-by-reference

The difference between passing-by-value and passing-by-reference are listed below.

S.No. Passing-by-value Passing-by-reference
1 Ex: double a; double &a;
2 ais a local variable a is a local reference
’ 3 a is a duplicate of the variable. a is a synonym for the variable.
4 It cannot change the value of the It can change the value of the
variable in the main function. variable in the main function.

5 The variable is read-only. The variable is read-write.

—p. 11/11

	�lue large Definition
	�lue large General Format
	�lue large General Format
	�lue large Example
	�lue large Example
	�lue small Void function with passing-by-value and passing-by-reference
	�lue small Void function with passing-by-value
	�lue small Void function with passing-by-reference
	�lue small Void function with passing-by-reference
	�lue small Difference between passing-by-value and passing-by-reference

