
VOID FUNCTION IN C++
.

.

.

S. Rajasekar
School of Physics

Bharathidasan University
Tiruchirapalli - 620 024

email: rajasekar@cnld.bdu.ac.in
srj.bdu@gmail.com

– p. 1/11

Definition

When a program is large it will be difficult to understand it.

For simplicity, easy understanding and minimize the length

of a program, the job of the program can be divided into a

number of subtasks. These subtasks may be performed

independently in separate subprograms. Then the

subprograms can be linked together to do the entire job.

For example, we want to write a program to compute a

mean value, variance, moments and probability distribution

of a set of numbers. We can write separate programs

(subprograms) for each of these tasks and then combine

them into a single program. These subprograms are call

void functions.
– p. 2/11

General Format

The name of a void function cannot assume a value. However, any number of values

calculated in the void function subprogram can be brought into the main program. A

main program itself can be written as a void function. The following is the general form of

a program with a void function.

- - - - -

- - - - -

void name (arguments);

main ()

{

- - - - -

name (arguments);

- - - - -

}

void name (arguments)

{

- - - - -

}

– p. 3/11

General Format

In the above name is the name of the void
function and arguments are the list of variables.
The task of a void subprogram is specified
usually at the end of the program.

– p. 4/11

Example

Write a program using a void function for arranging the numbers a and b in ascending

order.

// Program for arranging a and b in ascending order using a void function

#include 〈iostream.h〉

#include 〈math.h〉

#include 〈conio.h〉

void ascending (double a, double b);

main ()

{

double a, b;

cin>>a>>b;

ascending (a, b);

return 0;

}

void ascending (double a, double b)

{

double tem;

if (a>b)

– p. 5/11

Example

{

tem = a;

a = b;

b = tem;

}

cout<<“a = "<<a<<“ b = "<<b<<endl;

}

Input 5 3

Output 3 5

– p. 6/11

Void function with passing-by-value and

passing-by-reference

Consider the following program for aranging the two numbers a and b in ascending

order: // Program for arranging a and b in ascending order using a void function

#include 〈iostream.h〉

#include 〈math.h〉

#include 〈conio.h〉

void ascending (double a, double b);

main ()

{

double a, b;

cin>>a>>b;

ascending (a, b);

cout<<“a = "<<a<<“ b = "<<b<<endl;

return 0;

}

void ascending (double a, double b)

{

double tem;

if (a>b)

– p. 7/11

Void function with passing-by-value

{

tem = a;

a = b;

b = tem;

}

cout<<“a = "<<a<<“ b = "<<b<<endl;

}

In the above program for the two numbers a=5 and b=3 the output statement in the void

function prints the result as

a=3 b=5

which is correct. While the cout in the main program prints a=5 and b= 3. That is, the

changes happened to a and b in the void function subprogram are not transfered to the

main function. The changes happened to a and b are restricted to the void function only.

The values of a and b in the main program are unaltered. This means the variables a

and b are local variables to the void function. In the main function the variables a and b

are read-only-variables. This is known as pass-by-value mechanism.

– p. 8/11

Void function with passing-by-reference

Suppose we wish to update the values of a and b in the main program. This can be done

by passing the values by reference and is called passing-by-reference. To pass a value

of a variable by reference simply attach the ampersand symbol ‘&’ to the type specifier in

the function. In this case the argument is read-write instead of read only. Then any

change to the local variables in the void function subprogram will be passed to the

corresponding variables in the main program.

Example:

// Program for arranging a and b in ascending order using a void function

#include 〈iostream.h〉

#include 〈math.h〉

#include 〈conio.h〉

void ascending (double &a, double &b);

main ()

{

double a, b;

cin>>a>>b;

ascending (a, b);

cout<<“a = "<<a<<“ b = "<<b<<endl;

– p. 9/11

Void function with passing-by-reference

return 0;

}

void ascending (double &a, double &b)

{

double tem;

if (a>b)

{

tem = a;

a = b;

b = tem;

}

}

Input 5 3

Output 3 5

– p. 10/11

Difference between passing-by-value and

passing-by-reference

The difference between passing-by-value and passing-by-reference are listed below.

S.No. Passing-by-value Passing-by-reference

1 Ex: double a; double &a;

2 a is a local variable a is a local reference

3 a is a duplicate of the variable. a is a synonym for the variable.

4 It cannot change the value of the It can change the value of the

variable in the main function. variable in the main function.

5 The variable is read-only. The variable is read-write.

– p. 11/11

	�lue large Definition
	�lue large General Format
	�lue large General Format
	�lue large Example
	�lue large Example
	�lue small Void function with passing-by-value and passing-by-reference
	�lue small Void function with passing-by-value
	�lue small Void function with passing-by-reference
	�lue small Void function with passing-by-reference
	�lue small Difference between passing-by-value and passing-by-reference

