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"N/ Euler (or) Eulerian angles

o It is necessary to seek three independent 2!
parameters (or generalized coordinates) that ‘
specify the orientation of a rigid body in such a \‘ .

manner that the corresponding orthogonal AN »
matrix of transformation has the determinant V
i AR

o The most common and useful parameters are imm‘dss

the Euler (or) Eulerian angles
o Transformation from a given cartesian coordinate system to another by
means of three successive rotations performed in a specific sequence.

o The Euler angles are defined as the three successive angles of rotation.
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"N/ Euler (or) Eulerian angles

(1) Rotate the initial system of axes xyz, by an angle ¢ counterclockwise about
z-axis — The resultant coordinate system is labelled the {n¢ axes (an
intermediate coordinate set).

(2) The intermediate axes, £nC , are rotated about the £ axis counterclockwise
by an angle ¢ to produce another intermediate coordinate set, £'n'¢’ axes
— The & axis is at the intersection of xy and £’ planes and is known as
line of nodes.

(3) Finally the &'n/¢’ axes are rotated counterclockwise by an angle ) about
the ¢’ axis to produce the desired x'y’z’ system of axes.

The Euler angles ¢, 6 and 1) completely specify the orientation of the x'y’z’
system relative to xyz — the generalized coordinates.
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W/ Euler (or) Eulerian angles

transformation A — obtained as

triple product of separate A=BCD
rotations. Initial rotation about z
axis .
cos¢ sing O
& = Dx D=|—-sing cos¢p O
0 0 1
o Transformation from &n¢ to &'n'(’
— described by a matrix C L 0 .0
C=1[0 cosf sind
¢ =C¢ 0 —sinf cosf
cosy siny O
gabicaly, B=|—-siny cosyp 0
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"9/ Euler (or) Eulerian angles

The product A = BCD

cos 1) cos ¢ — cos O sin ¢psin ) cossing — cosBhcospsiny  sinysinf
A = | —sinYcosp — cosfsinpcostp —sinipsing — coshcospsinty  cospsinb
sin@sin ¢ —sin 6 cos ¢ cos 6
The inverse transformation from body coordinates to space axes

x=A"1x

costsin — cosfcospsinyy  —sinwsing — cosf cospsinyy  — sin 6 cos P
sin 0'sin v sin 0 cos ) cos 0

" cos Y cosp — cosBsinpsiny  —sint cos ¢ — cos b sin ¢ cos P sin 0'sin ¢
A - =

Rigid body dynamics

)



Rate of change of a vector

by an observer in the body system of axes will differ from the corresponding
changes as seen by an observer in the space system.

(9) e = (9€) e, * (99)...

(dé) _=dix G — (dé)space - (dé) oty d5 x &

a6 = 96 +& x G, where @dt = dQ
dt dt
space body

An operator acting on some given vector:
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/; Rigid body equations of motion

©

possible to split the problem into two separate phases:

o one concerned solely with the translational motion of the body
o and the other with the rotational motion

6 coordinates — 3 Cartesian coordinates of a point fixed on the rigid body
— 3 Euler angles for the motion about the point

o origin of the coordinate system is chosen to be the center of mass (c.m.)

o similar division holds for the total kinetic energy T,

T = %Mv2 + T'(,0,%)
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I\ Rigid body equations of motion

(relative to a fixed set of coordinates, i.e. the space axes)
° I'_-\sg = I:\"1 + I:\" where R is the difference vector

o The origin of the second set of axes — considered as a point defined relative
to the first set — the time derivative of R is then given by

dR,\ [ dR dRY\ _ (dR - =

o Alternatively, the origin of the first coordinate system — considered as fixed
in the second system with the position vector -R — the time derivative of R;
relative to the fixed space axes

Rigid body dynamics
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/; Rigid body equations of motion

Comparison of the above two expressions implies (&1 — &a) X R=0

This means any difference in the angular velocity vectors at two arbitrary
points must lie along the line joining the two points

Assuming & continuous — only possibility for all pairs of points is that the
two angular velocities must be equal, i.e., &¥1 = &

The angular velocity is the same for all coordinate system fixed in the rigid
body.
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‘\\\39'!}/7 Rigid body equations of motion

momentum about that point: L = m; (¥; X V;) (summation over i implied) —
¥ raidus vector and V; is the velocity of the i-th particle.

o Since 1; is a fixed vector relative to the body, the velocity v; with respect to
the space set of axes arises solely from the rotational motion of the rigid
body about the fixed point—i.e., Vi =W X F;

The total angular momentum T .

° & o Each component of L is a linear
function of all the components of

mj [F; x (& x 17)] , the angular velocity.
. N NN ]
= m; [Wri —ri (% W)] . o The angular momentum vector is
. related to the angular velocity by a
The x component of L linear transformation.

Rigid body dynamics
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‘\\\,‘Q'!}) Rigid body equations of motion

with the equations of a linear
transformation

Ly = lowyx + Lywy + Lew;.
Similarly,

Ly, = lywy + Lywy + 1,w;,

L, = lywy + Lyw, + Lw,.

o Iy, ly, etc. are the nine elements
of the transformation matrix

summation is replaced by a volume
integration

o = / o(7) (% — x?) dV,
v
If the coordinate axes are denoted

by xj, j =1,2,3 (x,y, z) then the
matrix element [

I = / p(r) (r26jk — xjxk) dv.
v

The relation between L and &
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‘\\\39'!}/7 Rigid body equations of motion

o The symbol I stands for the operator whose matrix elements are the inertia
coefficients, and & and L are column matrices.

o | an operator acting upon the vector w and not the coordinate system.

o The vectors L and & are two physically different vectors having different
dimensions — i.e., not the merely same vector represented in two
coordinate systems.

@ Unlike the operator of rotation I will have dimensions (mass times length
squared) — and not restricted by any orthogonality condition.

o The operator I acting upon the vector & results in the physically new vector
L

Rigid body dynamics
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N9/ Tensors

o The quantity I — considered as defining the quotient of [ and & for the
product I and @ given L

o The quotient of two quantities often not a member of same class as the
dividing factors — but they may belong to a more complicated class.

o For instance, the quotients of two integers is in general not an integer —
rather a rational number.

o Similarly the quotient of two vectors cannot be defined consistently within
the class of vectors

@ In our case, I is a new type of quantity — a tensor of the second rank.

o Tensor of N-th rank (Cartesian coordinate) — defined as a quantity having
3N components, Tii...

Rigid body dynamics
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according to

/!

!
Uk(X ) = di1djmdkm Mimn

o A tensor of the zero rank has one component, which is invariant under
orthogonal transformation — a scalar is a tensor of zero rank

o A tensor of the first rank has three components: T/ = a; T;.

A tensor of the second rank has nine components: T,j = aiaj Tw

o How to distinguish a second-rank tensor T and the square matrix from its
components?

o A tensor is defined only in terms of its transformation properties under
orthogonal transformations.

Rigid body dynamics
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‘\\\S@.’}/’ The Inertia tensor & moment of inertia

second-rank tensor and is usually
called the moment of inertia T = —

tensor or inertia tensor. 2 2
or
o The kinetic energy of the motion
about a point w2 oo 1, ., .
T=—n-1-n==lw", J=wh
1 2 2
=mvi=mv  (GXF i
r= 2m,v, 2m,v, (@ 7) | is a scalar, defined by
Upon permuting the vectors in the I=h-1-7=m[r?—(F-n)3?],
triple do product
. known as the moment of inertia
T, mj (7 x V) about the axis of rotation

Rigid body dynamics
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‘\\\,‘Q'!}) The Inertia tensor & moment of inertia

as the sum, over the particles of the body, of the
product of the particle mass and the square of the
perpendicular distance from the axis.

The perpendicular distance is equal to the magnitude of the vector 7 x 7
I'=m;(r; x f)-(r; x A)
mj

Multiply and divide by w* = = — (& xF)- (& xF)
w

(& x ;) is the relative velocity V; measured in the space system of axes
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‘\\\,‘Q'!}} The Inertia tensor & moment of inertia

mass, and let 7; and r! are the radii vectors from 'O’
and the center of mass, respectively, to the i-th
particle.

The three vectors are connected by the relation

=R+

The moment of inertia about the axis a is . 5
lo=lp+ M (R x )

= I, + MR?sin?6

P
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‘\\\,‘Q'!}} The Inertia tensor & moment of inertia

o The inertia tensor is defined from the kinetic energy of rotation of an axis

1 o o2
Trotation = 5 mi (& X 7i)" = Swawsm (6apr? — Fiatip) -
® Tiotation is in bilinear form in the components of W: Totation = %Iaﬂwawg
o log = mj (Sapr? — riarig) is the moment of inertia tensor.

o For a rigid body with continuous distribution of density p(7), the sum of
the components of the moment of inertia tensor reduces to

log = / p(7) (5a5r2 — rarﬂ) dv.
v
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‘\\\,‘Q'!}) Moment of inertia: example

o Consider a homogeneous cube of density p, mass M and side a.

o The origin is chosen to be at one corner and the three edges of adjacent to
that corner lie on the +x, +y, and +2z axes.

o This means p = M/a3, r? = x% + y? + 22

2p  _1lp _1,
3 4 4
/112/// (Y +2%) dxdydz 1= |-1b 2b —1b|, b= M2’
—ib _lp 2
4 4 3
M2a5 2
73 3"
. Calculate the moment of inertia tensor
ho = /// = (—xy) dxdydz for a solid cuboid of height h, width w,

and depth d, and mass m by fixing the

Rigid body dynamics
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9/ The Euler equations of motion

relating to the translational motion of the center of mass and another
involving motion about the centre of mass.
1

1
T =M+ =l
5 v—|—2w

o A similar sort of division can be made for the potential energy also. Then
the Lagrangian can be written as

L(qv q) = LC(qCa qC) + Lb(qbv qb)

L is the part of the Lagrangian involving the generalized coordinates (and
velocities §.) of the center of mass, and Ly the part relating to the
orientation of the body about the center of mass (described by g, and §p).

Rigid body dynamics
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‘M’ The Euler equations of motion

Newtonian approach leads to a set of equations known as Euler’s
equations of motion.

o Consider either an inertial frame whose origin is at the fixed point of the
rigid body, or a system of space axes with origin at the center of mass. In

these two situations
dL »
— | =N.
S

The subscript s is used to denote the time derivative is with respect to axes
that do not share the rotation of the body. However, the derivatives with
respect to axes fixed in the body:

Rigid body dynamics
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9/ The Euler equations of motion

subsscript principle axes relative to the reference
point, then the angular momentum

dL vGx[=N components L; = liw; (no summation
dt over ).
: - duw:
o The i-th component of the L Iid_tl + ejwile = N;
dL; . o N
g + ewile = N; since the principal moments of inertia
are time independent.
o In expanded form o Euler's equation of the motion for a

rigid body with one point fixed.

hwi — wows (b — ) = Ny,
1_1 23 (1 — 1) ! o The case | = I, # I5: A torque with

Rigid body dynamics
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&

‘M’ Torque free motion of a rigid body

the centre of mass is either at rest or moving uniformly.

The angular momentum arises only from rotation about the center of mass

The Euler's equation are the equations of motion for the complete system.

hwi = waws (b — 13),
by = wawi (B —h),
I3(,:)3 = Wiw? (Il — 12) .

Integrals of motion: The kinetic energy and total angular momentum must
be constant in time

o Possible to integrate completely in terms of Jacobian elliptic functions.

Rigid body dynamics
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"9/ Poinsot’s construction

oriented along the principal axes of the plane tangent at a point g
the body. must be constant.

@ The axes measure the components
of a vector p along the
instantaneous axis of rotation.

o In this o space, define a function

Flo)=5-1-5=pl.

+ F =1 is the inertia ellipsoid Rigid body dynamics



Poinsot’s construction

fixed distance from the origin of the ellipsoid.

@ The normal to the tangent plane, being along L, also has a fixed direction
and the plane is known as invariable plane.

o The force free motion of the rigid body can
be visualized as being such that the inertia
ellipsoid rolls (without slipping) on the
invariable plane with the center of the
ellipsoid a constant height about the plane.

o The rolling occurs without slipping because the point of contact is defined
by the position of g — the instantaneous axis of rotation — is the one
direction in the body momentarily at rest.

polhode
herpolhode

Rigid body dynamics
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W\ Heavy symmetrical top with one point fixed

gravitational field in which one point on the
symmetry axis is fixed in space.

o Examples: Child's top, gyroscope, etc.

Gyroscope
frame

Spin axis

Gimbal Rotor

o The symmetry axis (one of the principal axes) is chosen the z axis of the
coordinate system fixed on the rigid body.

Rigid body dynamics
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‘M’ Heavy symmetrical top with one point fixed

Vertical
!

o ¢ measures the azimuth of the top about the vertical.
o © is the rotation angle of the top about its own z axis.

o /| is the distance of the center of gravity (located on
the symmetry axis) from the fixed point.

The rate of change of these three angles give the characteristic
motions of the top

L]
i Line of nodes

e ¢) = rotation or spinning of the top about its own figure axis, z.

o ¢ = precession or rotation of the figure axis z about the vertical 2’
axis.

Rigid body dynamics
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W\ Heavy symmetrical top with one point fixed

o The three principal moments of inertia: Iy = I, # k.

o The Euler's equations become

hw1 4+ waws (B — h) = Ny,
by 4+ wawy (h — B) = No,
hws = Ns.
o Consider the case where initially N; = N3 = 0 and
Ny # 0, and w; = wp =0 and w3 # 0.

The torque N; will cause w; to change — the second equation requires that
wy begin to change.

Rigid body dynamics
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W\ Heavy symmetrical top with one point fixed

o The kinetic energy can be written as

1 1
T = 5/1 (wf +w§) + 5/30.)%7

or in terms of Euler's angles

T = %Il (92 +<i>2sin29) + %I3 (1/3+¢c050>2.

o The potential energy of the body is the sum over all
the particles X

V:_miﬁ’gv X

V = —Ml[é o g = Mgl cosf Rigid body dynamics
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L= %Il (92 +<;.52sin26> < %I3 <¢ 4F q")cos0)2 — Mgl cos 0,

@ ¢ and 1 do not appear explicitly in the Lagrangian — they are cyclic
coordinates — the corresponding generalized momenta are constant in time.

o The momentum conjugate to a rotation is the component of the total
angular momentum along the axis of rotation — for ¢ is the vertical axis,
and for v, the z axis.

@ These components of angular momentum must be constant in time — there
is no component of the torque along either the vertical or the body z-axis,
as the torque due to gravity acts along the line of nodes (by definition both
the axes are perpendicular to the line of nodes).

Rigid body dynamics
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W\ Heavy symmetrical top with one point fixed

aL I
Py = 81/} (7,11 + ¢ cos 9) hws = ha, = w3 I3a
and
8L
ps = 8¢ = (hsin®0 + I3 cos® 0) &+ ltpcos O = Iy b,

where a and b are new constants.

o There is another first integral, the total energy as the system is conservative

- _ 1 5 9 .o 1 . . 2
AT (a + @2 sin 9)+§/3 (¢+¢cos€) + Mgl cosb),

Rigid body dynamics
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W\ Heavy symmetrical top with one point fixed

can be obtained from these three first integrals without directly using
Lagrange equations. From the equation for py,

I3¢ = ha- Ig(iSCOSH,
and substituting the above in py equation

b — acosf

hosin® + hacos = hb =— ¢ = —
sin“ 6

o If 8 is known as a function of time, the above d) equation could be
integrated to furnish the dependence of ¢ on time.

ha  (b—acosf

Rigid body dynamics



W\ Heavy symmetrical top with one point fixed

h(b— acosf)’

= + Mgl cos @,
2" T2 sinZe &

o It has the form of an equivalent one-dimensional problem in the variable 6,
with the effective potential V"

li {b— acosf 2
V' = Mgl = ———
gl cos 6 + > ( pr )

o Thus, we have four constants — the two angular momenta py, ps, the
energy term E — w3 /2, and the potential energy term Mgl.

o Define four normalized constants

_2E — huwj 2Mgl Py

0 = a=—, and b:P_¢

« ) ) )
Il ll /1 /1 Rigid body dynamics -




W\ Heavy symmetrical top with one point fixed

_ @y (b — acosf)?

o
sin 0

+ B cos b,

o The one-dimensional problem is similar to the description of the radial
motion for the central force problem.

o In a convenient variable u = cosf
i’ = (1- uz)(a — Bu)—(b— au)z, (A)
which can be reduced to a quadrature

u(t) le

Rigid body dynamics
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W\ Heavy symmetrical top with one point fixed

o The polynomial in the radical is a cubit and so one has to deal with elliptic
integrals.

o The solution can also be generated numerically with the help of desktop
computers.

o On the other hand, the general nature of the above problem can be
discovered without actually performing the integrations.

o A simple analysis can be made by designating the right hand side of the
equation (A) to a function f(u)

f(u) = (1 - v?)(a — Bu) — (b — au)?,

Rigid body dynamics
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W\ Heavy symmetrical top with one point fixed

full equation must be considered for the top.

o To understand the general motion of a spinning body, one should consider
only cases where 5 > 0.

o The roots of the polynomial furnish ),
the angles at which 6 changes sign, K
u=-1 u=+I
i.e., the turning angles. — /\' i

@ There is also a physical constraint
that u must satisfy —1 < u < +1.

Rigid body dynamics
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‘\\\39!’//7 Heavy symmetrical top with one point fixed

Rigid body dynamics
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