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Euler (or) Eulerian angles

It is necessary to seek three independent
parameters (or generalized coordinates) that
specify the orientation of a rigid body in such a
manner that the corresponding orthogonal
matrix of transformation has the determinant
+1.

The most common and useful parameters are
the Euler (or) Eulerian angles
Transformation from a given cartesian coordinate system to another by
means of three successive rotations performed in a specific sequence.

The Euler angles are defined as the three successive angles of rotation.
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Euler (or) Eulerian angles

(1) Rotate the initial system of axes xyz , by an angle ϕ counterclockwise about
z-axis — The resultant coordinate system is labelled the ξηζ axes (an
intermediate coordinate set).

(2) The intermediate axes, ξηζ , are rotated about the ξ axis counterclockwise
by an angle θ to produce another intermediate coordinate set, ξ′η′ζ ′ axes
— The ξ′ axis is at the intersection of xy and ξ′η′ planes and is known as
line of nodes.

(3) Finally the ξ′η′ζ ′ axes are rotated counterclockwise by an angle ψ about
the ζ ′ axis to produce the desired x ′y ′z ′ system of axes.

The Euler angles ϕ, θ and ψ completely specify the orientation of the x ′y ′z ′
system relative to xyz — the generalized coordinates.
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Euler (or) Eulerian angles
The elements of complete
transformation A – obtained as
triple product of separate
rotations. Initial rotation about z
axis

ξ = Dx

Transformation from ξηζ to ξ′η′ζ ′
— described by a matrix C

ξ′ = Cξ

Finally,

x′ = Bξ′

A = BCD

D =

 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1


C =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ


B =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1


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Euler (or) Eulerian angles

The product A = BCD

A =

(
cosψ cosϕ− cos θ sinϕ sinψ cosψ sinϕ− cos θ cosϕ sinψ sinψ sin θ

− sinψ cosϕ− cos θ sinϕ cosψ − sinψ sinϕ− cos θ cosϕ sinψ cosψ sin θ
sin θ sinϕ − sin θ cosϕ cos θ

)
The inverse transformation from body coordinates to space axes

x = A−1x ′

A−1 =

(
cosψ cosϕ− cos θ sinϕ sinψ − sinψ cosϕ− cos θ sinϕ cosψ sin θ sinϕ
cosψ sinϕ− cos θ cosϕ sinψ − sinψ sinϕ− cos θ cosϕ sinψ − sin θ cosϕ

sin θ sinψ sin θ cosψ cos θ

)
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Rate of change of a vector
The change in a time dt of the components of a general vector G⃗ as seen
by an observer in the body system of axes will differ from the corresponding
changes as seen by an observer in the space system.(

dG⃗
)

space
=
(

dG⃗
)

body
+
(

dG⃗
)

rot.(
dG⃗
)

rot.
= dΩ⃗× G⃗ =⇒

(
dG⃗
)

space
=
(

dG⃗
)

body
+ dΩ⃗× G⃗(

dG⃗
dt

)
space

=

(
dG⃗
dt

)
body

+ ω⃗ × G⃗ , where ω⃗dt = dΩ⃗

An operator acting on some given vector:(
d
dt

)
s
=

(
d
dt

)
r
+ ω⃗ ×
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Rigid body equations of motion
Any general displacement: a translation plus a rotation (Chasles theorem)
possible to split the problem into two separate phases:

one concerned solely with the translational motion of the body
and the other with the rotational motion

6 coordinates – 3 Cartesian coordinates of a point fixed on the rigid body
– 3 Euler angles for the motion about the point

origin of the coordinate system is chosen to be the center of mass (c.m.)

similar division holds for the total kinetic energy T ,

T =
1
2Mv2 + T ′ (ϕ, θ, ψ)

The potential energy can also be divided into two
parts and so the Lagrangian.
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Rigid body equations of motion
R⃗1 and R⃗2 — position vectors of the origins of two set of body coordinates
(relative to a fixed set of coordinates, i.e. the space axes)

R⃗2 = R⃗1 + R⃗, where R⃗ is the difference vector

The origin of the second set of axes – considered as a point defined relative
to the first set – the time derivative of R⃗2 is then given by(

dR⃗2
dt

)
s

=

(
dR⃗1
dt

)
s

+

(
dR⃗
dt

)
s

≡

(
dR⃗1
dt

)
s

+ ω⃗1 × R⃗

Alternatively, the origin of the first coordinate system – considered as fixed
in the second system with the position vector -R⃗ – the time derivative of R⃗1
relative to the fixed space axes(

dR⃗1
dt

)
s

=

(
dR⃗2
dt

)
s

−

(
dR⃗
dt

)
s

≡

(
dR⃗2
dt

)
s

− ω⃗2 × R⃗
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Rigid body equations of motion

Comparison of the above two expressions implies (ω⃗1 − ω⃗2)× R⃗ = 0

This means any difference in the angular velocity vectors at two arbitrary
points must lie along the line joining the two points

Assuming ω⃗ continuous – only possibility for all pairs of points is that the
two angular velocities must be equal, i.e., ω⃗1 = ω⃗2

The angular velocity is the same for all coordinate system fixed in the rigid
body.
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Rigid body equations of motion
When a rigid body moves with one point staitonary, the total angular
momentum about that point: L⃗ = mi (⃗ri × v⃗i) (summation over i implied) –
r⃗i raidus vector and v⃗i is the velocity of the i-th particle.

Since r⃗i is a fixed vector relative to the body, the velocity v⃗i with respect to
the space set of axes arises solely from the rotational motion of the rigid
body about the fixed point– i.e., v⃗i = ω⃗ × r⃗i

The total angular momentum

L⃗ = mi [⃗ri × (ω⃗ × r⃗i)] ,

= mi
[
ω⃗r2

i − r⃗i (⃗ri · ω⃗)
]
.

The x component of L⃗

Lx = ωxmi
(
r2
i − x2

i
)
− ωy mixiyi − ωzmixizi
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Each component of L⃗ is a linear
function of all the components of
the angular velocity.

The angular momentum vector is
related to the angular velocity by a
linear transformation.



Rigid body equations of motion
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To emphasize the similarity of Lx
with the equations of a linear
transformation

Lx = Ixxωx + Ixyωy + Ixzωz .

Similarly,

Ly = Iyxωx + Iyyωy + Iyzωz ,

Lz = Izxωx + Izyωy + Izzωz .

Ixx , Ixy , etc. are the nine elements
of the transformation matrix

Ixx = mi
(
r2
i − x2

i
)
,

Ixy = −mixiyi .

For continuous bodies the
summation is replaced by a volume
integration

Ixx =

∫
V
ρ(⃗r)

(
r2 − x2) dV ,

If the coordinate axes are denoted
by xj , j = 1, 2, 3 (x , y , z) then the
matrix element Ijk

Ijk =

∫
V
ρ(⃗r)

(
r2δjk − xjxk

)
dV .

The relation between L⃗ and ω⃗

L⃗ = Iω⃗.



Rigid body equations of motion

The symbol I stands for the operator whose matrix elements are the inertia
coefficients, and ω⃗ and L⃗ are column matrices.

I an operator acting upon the vector ω and not the coordinate system.

The vectors L⃗ and ω⃗ are two physically different vectors having different
dimensions — i.e., not the merely same vector represented in two
coordinate systems.

Unlike the operator of rotation I will have dimensions (mass times length
squared) – and not restricted by any orthogonality condition.

The operator I acting upon the vector ω⃗ results in the physically new vector
L⃗
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Tensors

The quantity I — considered as defining the quotient of L⃗ and ω⃗ for the
product I and ω⃗ given L⃗

The quotient of two quantities often not a member of same class as the
dividing factors – but they may belong to a more complicated class.

For instance, the quotients of two integers is in general not an integer —
rather a rational number.

Similarly the quotient of two vectors cannot be defined consistently within
the class of vectors

In our case, I is a new type of quantity – a tensor of the second rank.

Tensor of N-th rank (Cartesian coordinate) — defined as a quantity having
3N components, Tijk···
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Tensors
They transform under an orthogonal transformation of coordinates, A
according to

T ′
ijk···(X ′) = ailajmakmTlmn···

A tensor of the zero rank has one component, which is invariant under
orthogonal transformation – a scalar is a tensor of zero rank

A tensor of the first rank has three components: T ′
i = aijTj .

A tensor of the second rank has nine components: T ′
ij = aikajlTkl

How to distinguish a second-rank tensor T and the square matrix from its
components?

A tensor is defined only in terms of its transformation properties under
orthogonal transformations.
A matrix is in no way restricted in the types of transformations it may
undergo — indeed considered as entirely independent of its properties under
some particular class of transformations.
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The Inertia tensor & moment of inertia

15 / 37
Rigid body dynamics

▲

The quantity I is identified as a
second-rank tensor and is usually
called the moment of inertia
tensor or inertia tensor.

The kinetic energy of the motion
about a point

T =
1
2miv2

i =
1
2mi v⃗i · (ω⃗ × r⃗i)

Upon permuting the vectors in the
triple do product

T =
ω⃗

2 · mi (⃗ri × v⃗i)

T =
ω⃗ · L⃗

2 =
ω⃗ · I · ω⃗

2
or

T =
ω2

2 n̂ · I · n̂ =
1
2 Iω2, ω⃗ = ωn̂

I is a scalar, defined by

I = n̂ · I · n̂ ≡ mi
[
r2
i − (⃗ri · n̂)2] ,

known as the moment of inertia
about the axis of rotation



The Inertia tensor & moment of inertia
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The moment of inertia about an axis is defined
as the sum, over the particles of the body, of the
product of the particle mass and the square of the
perpendicular distance from the axis.

The perpendicular distance is equal to the magnitude of the vector r⃗i × n̂

I = mi (⃗ri × n̂) · (⃗ri × n̂)

Multiply and divide by ω2 =⇒ I = mi
ω2 (ω⃗ × r⃗i) · (ω⃗ × r⃗i)

(ω⃗ × r⃗i) is the relative velocity v⃗i measured in the space system of axes

I = 2T
ω2

The value of moment of inertia depends upon the direction of the axis of
rotation — As ω⃗ changes its direction with respect to the body in the course
of time, the moment of inertia must also be considered a function of time.



The Inertia tensor & moment of inertia
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Let R⃗ be a vector from the origin ’O’ to the center of
mass, and let r⃗i and r ′i are the radii vectors from ’O’
and the center of mass, respectively, to the i-th
particle.
The three vectors are connected by the relation

r⃗i = R⃗ + r⃗ ′i

The moment of inertia about the axis a is

Ia = mi (⃗ri × n̂)2 = mi

[(⃗
r ′i + R⃗

)
× n̂
]2

= M
(

R⃗ × n̂
)2

+ mi (⃗r ′i × n̂)2
+ 2mi

(
R⃗ × n̂

)
· (⃗r ′i × n̂)

= M
(

R⃗ × n̂
)2

+ mi (⃗r ′i × n̂)2 − 2
(

R⃗ × n̂
)
· (n̂ × mi r⃗ ′i )

by the definition of center of mass mi r ′i = 0

Ia = Ib + M
(

R⃗ × n̂
)2

= Ib + MR2 sin2 θ



The Inertia tensor & moment of inertia
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The inertia tensor is defined from the kinetic energy of rotation of an axis

Trotation =
1
2mi (ω⃗ × r⃗i)

2 ≡ 1
2ωαωβmi

(
δαβr2

i − riαriβ
)
.

Trotation is in bilinear form in the components of ω⃗: Trotation = 1
2 Iαβωαωβ

Iαβ = mi
(
δαβr2

i − riαriβ
)

is the moment of inertia tensor.

For a rigid body with continuous distribution of density ρ(⃗r), the sum of
the components of the moment of inertia tensor reduces to

Iαβ =

∫
V
ρ(⃗r)

(
δαβr2 − rαrβ

)
dV .



Moment of inertia: example
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Consider a homogeneous cube of density ρ, mass M and side a.

The origin is chosen to be at one corner and the three edges of adjacent to
that corner lie on the +x , +y , and +z axes.

This means ρ = M/a3, r2 = x2 + y2 + z2

I11 =

∫∫∫ M
a3
(
y2 + z2) dxdydz

=
M
a3

2a5

3 ≡ 2
3Ma2

I12 =

∫∫∫ M
a3 (−xy) dxdydz

=
M
a3

(
−a5

4

)
≡ −1

4Ma2

I =

 2
3b −1

4b −1
4b

−1
4b 2

3b −1
4b

−1
4b −1

4b 2
3b

 , b = Ma2

Calculate the moment of inertia tensor
for a solid cuboid of height h, width w ,
and depth d , and mass m by fixing the
origin at one corner and the three edges
of adjacent to that corner lie on the +x ,
+y , and +z axes..



The Euler equations of motion

20 / 37
Rigid body dynamics

▲

The total kinetic energy and angular momentum split into one term
relating to the translational motion of the center of mass and another
involving motion about the centre of mass.

T =
1
2Mv2 +

1
2 Iω2

A similar sort of division can be made for the potential energy also. Then
the Lagrangian can be written as

L(q, q̇) = Lc(qc , q̇c) + Lb(qb, q̇b).

Lc is the part of the Lagrangian involving the generalized coordinates (and
velocities q̇c) of the center of mass, and Lb the part relating to the
orientation of the body about the center of mass (described by qb and q̇b).

It is convenient to work in terms of the principle axes system of the point of
reference (kinetic energy takes simpler form).



The Euler equations of motion
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For rotational motion about a fixed point or the center of mass, the direct
Newtonian approach leads to a set of equations known as Euler’s
equations of motion.

Consider either an inertial frame whose origin is at the fixed point of the
rigid body, or a system of space axes with origin at the center of mass. In
these two situations (

dL⃗
dt

)
s

= N⃗.

The subscript s is used to denote the time derivative is with respect to axes
that do not share the rotation of the body. However, the derivatives with
respect to axes fixed in the body:(

dL⃗
dt

)
s

=

(
dL⃗
dt

)
b

+ ω⃗ × L⃗



The Euler equations of motion
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Or simply dropping the ‘body’
subsscript

dL⃗
dt + ω⃗ × L⃗ = N⃗

The i-th component of the L⃗

dLi
dt + ϵijkωjLk = Ni

If the body axes are taken as the
principle axes relative to the reference
point, then the angular momentum
components Li = Iiωi (no summation
over i).

Ii
dωi
dt + ϵijkωjLk = Ni

since the principal moments of inertia
are time independent.

In expanded form

I1ω̇1 − ω2ω3 (I2 − I3) = N1,

I2ω̇2 − ω3ω1 (I3 − I1) = N2,

I3ω̇3 − ω1ω2 (I1 − I2) = N3.

Euler’s equation of the motion for a
rigid body with one point fixed.

The case I1 = I2 ̸= I3: A torque with
components N1 or N2 will cause ω1
and ω2 to change without affecting
ω3.



Torque free motion of a rigid body
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Motion of a rigid body not subject to any net forces or torques. This means
the centre of mass is either at rest or moving uniformly.

The angular momentum arises only from rotation about the center of mass

The Euler’s equation are the equations of motion for the complete system.

I1ω̇1 = ω2ω3 (I2 − I3) ,
I2ω̇2 = ω3ω1 (I3 − I1) ,
I3ω̇3 = ω1ω2 (I1 − I2) .

Integrals of motion: The kinetic energy and total angular momentum must
be constant in time

Possible to integrate completely in terms of Jacobian elliptic functions.

An elegant geometrical description of the motion without knowing the
complete solution — Poinsot’s construction.



Poinsot’s construction
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Consider a coordinate system
oriented along the principal axes of
the body.

The axes measure the components
of a vector ρ⃗ along the
instantaneous axis of rotation.

ρ⃗ =
ω⃗

ω
√

I
=

ω⃗√
2T

,

In this ρ⃗ space, define a function

F (ρ) = ρ⃗ · I · ρ⃗ = ρ2I.

Surfaces of constant F are
ellipsoids

F = 1 is the inertia ellipsoid

Distance between the origin and
the plane tangent at a point ρ⃗
must be constant.

ρ⃗ · L⃗
L =

ω⃗ · L⃗
L
√

2T
≡

√
2T
L ,

where T = (ω⃗ · L⃗)/2 is used.



Poinsot’s construction
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Both T and L⃗ are constants of the motion – the tangent plane is always a
fixed distance from the origin of the ellipsoid.

The normal to the tangent plane, being along L⃗, also has a fixed direction
and the plane is known as invariable plane.

The force free motion of the rigid body can
be visualized as being such that the inertia
ellipsoid rolls (without slipping) on the
invariable plane with the center of the
ellipsoid a constant height about the plane.

The rolling occurs without slipping because the point of contact is defined
by the position of ρ⃗ – the instantaneous axis of rotation – is the one
direction in the body momentarily at rest.

The curve traced out on the ellipsoid is the polhode, while the similar
curve on the invariable plane is the herpolhode.



Heavy symmetrical top with one point fixed
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Let us consider a symmetrical body in a uniform
gravitational field in which one point on the
symmetry axis is fixed in space.

Examples: Child’s top, gyroscope, etc.

The symmetry axis (one of the principal axes) is chosen the z axis of the
coordinate system fixed on the rigid body.

Since one point is stationary, the configuration of the top is completely
specified by the three Euler angles.



Heavy symmetrical top with one point fixed
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θ gives the inclination of the z axis from the vertical.

ϕ measures the azimuth of the top about the vertical.

ψ is the rotation angle of the top about its own z axis.

l is the distance of the center of gravity (located on
the symmetry axis) from the fixed point.

The rate of change of these three angles give the characteristic
motions of the top

ψ̇ =⇒ rotation or spinning of the top about its own figure axis, z .

ϕ̇ =⇒ precession or rotation of the figure axis z about the vertical z ′

axis.

θ̇ =⇒ nutation or bobbling up and down of the z figure axis relative to
the vertical space axis z ′



Heavy symmetrical top with one point fixed
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For many cases of interest (eg. top, gyroscope etc.), we have ψ̇ ≫ θ̇ ≫ ϕ̇

The three principal moments of inertia: I1 = I2 ̸= I3.

The Euler’s equations become

I1ω̇1 + ω2ω3 (I3 − I2) = N1,

I2ω̇2 + ω3ω1 (I1 − I3) = N2,

I3ω̇3 = N3.

Consider the case where initially N2 = N3 = 0 and
N1 ̸= 0, and ω1 = ω2 = 0 and ω3 ̸= 0.
The torque N1 will cause ω1 to change – the second equation requires that
ω2 begin to change.

Euler’s equation may not provide the most useful description of the motion.



Heavy symmetrical top with one point fixed
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Lagrangian procedure will be used to obtain a solution
The kinetic energy can be written as

T =
1
2 I1
(
ω2

1 + ω2
2
)
+

1
2 I3ω2

3 ,

or in terms of Euler’s angles

T =
1
2 I1
(
θ̇2 + ϕ̇2 sin2 θ

)
+

1
2 I3
(
ψ̇ + ϕ̇ cos θ

)2
.

The potential energy of the body is the sum over all
the particles

V = −mi r⃗i · g⃗ ,

and is equivalent to

V = −MR⃗ · g⃗ = Mgl cos θ



Heavy symmetrical top with one point fixed
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The Lagrangian

L =
1
2 I1
(
θ̇2 + ϕ̇2 sin2 θ

)
+

1
2 I3
(
ψ̇ + ϕ̇ cos θ

)2
− Mgl cos θ,

ϕ and ψ do not appear explicitly in the Lagrangian – they are cyclic
coordinates – the corresponding generalized momenta are constant in time.

The momentum conjugate to a rotation is the component of the total
angular momentum along the axis of rotation — for ϕ is the vertical axis,
and for ψ, the z axis.

These components of angular momentum must be constant in time – there
is no component of the torque along either the vertical or the body z-axis,
as the torque due to gravity acts along the line of nodes (by definition both
the axes are perpendicular to the line of nodes).



Heavy symmetrical top with one point fixed
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The two first integrals are

pψ =
∂L
∂ψ̇

= I3
(
ψ̇ + ϕ̇ cos θ

)
= I3ω3 = I1a, =⇒ ω3 =

I1
I3

a

and

pϕ =
∂L
∂ϕ̇

=
(
I1 sin2 θ + I3 cos2 θ

)
ϕ̇+ I3ψ̇ cos θ = I1b,

where a and b are new constants.

There is another first integral, the total energy as the system is conservative

E = T + V =
1
2 I1
(
θ̇2 + ϕ̇2 sin2 θ

)
+

1
2 I3
(
ψ̇ + ϕ̇ cos θ

)2
+ Mgl cos θ,



Heavy symmetrical top with one point fixed
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Only three additional quadratures are needed to solve the problem – they
can be obtained from these three first integrals without directly using
Lagrange equations. From the equation for pψ

I3ψ̇ = I1a − I3ϕ̇ cos θ,

and substituting the above in pϕ equation

I1ϕ̇ sin2 θ + I1a cos θ = I1b =⇒ ϕ̇ =
b − a cos θ

sin2 θ

If θ is known as a function of time, the above ϕ̇ equation could be
integrated to furnish the dependence of ϕ on time.

ψ̇ =
I1a
I3

− cos θ

(
b − a cos θ

sin2 θ

)



Heavy symmetrical top with one point fixed
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E − I3ω2
3/2 = E ′ is constant. Then

E ′ =
I1
2 θ̇

2 +
I1
2
(b − a cos θ)2

sin2 θ
+ Mgl cos θ,

It has the form of an equivalent one-dimensional problem in the variable θ,
with the effective potential V ”

V ′ = Mgl cos θ + I1
2

(
b − a cos θ

sin θ

)2

Thus, we have four constants — the two angular momenta pψ, pϕ, the
energy term E − I3ω2

3/2, and the potential energy term Mgl .

Define four normalized constants

α =
2E − I3ω2

3
I1

, β =
2Mgl

I1
, a =

pψ
I1
, and b =

pϕ
I1



Heavy symmetrical top with one point fixed
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In terms of the constants

α = θ̇2 +
(b − a cos θ)2

sin2 θ
+ β cos θ,

The one-dimensional problem is similar to the description of the radial
motion for the central force problem.

In a convenient variable u = cos θ

u̇2 = (1 − u2)(α− βu)− (b − au)2, (A)

which can be reduced to a quadrature

t =

∫ u(t)

u(0)

du√
(1 − u2)(α− βu)− (b − au)2



Heavy symmetrical top with one point fixed
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ϕ and ψ can also be reduced to quadratures.

The polynomial in the radical is a cubit and so one has to deal with elliptic
integrals.

The solution can also be generated numerically with the help of desktop
computers.

On the other hand, the general nature of the above problem can be
discovered without actually performing the integrations.

A simple analysis can be made by designating the right hand side of the
equation (A) to a function f (u)

f (u) = (1 − u2)(α− βu)− (b − au)2,



Heavy symmetrical top with one point fixed
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For a gyroscope, f (u) is only a quadratic equation since β = 0, while the
full equation must be considered for the top.

To understand the general motion of a spinning body, one should consider
only cases where β > 0.
The roots of the polynomial furnish
the angles at which θ̇ changes sign,
i.e., the turning angles.

There is also a physical constraint
that u must satisfy −1 ≤ u ≤ +1.



Heavy symmetrical top with one point fixed
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