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Integrable power law potentials

Solving the problem – finding r and ✓ as functions of time
with E, l, etc., as constants.

We really seek the equation of the orbit – the dependence
of r upon ✓ (eliminating the parameter t).

The relation between a di↵erential change dt and the
corresponding change d✓

l dt = mr

2

d✓ (1)

The relation between the derivaties

d

dt

=
l

mr

2

d

d✓

(2)

P. Muruganandam Classical Mechanics



Integrable power law potentials

Recall Lagrange equation for the r coordinate

mr̈ �mr✓̇

2 = f(r) (3)

Substituting d/dt in the above equation

1

r

2

d

d✓

✓
1

mr

2

dr

d✓

◆
� l

mr

3

= f(r) (4)

Substituting u = 1/r and expressing the results in terms
on potential

d

2

u

d✓

2

+ u = �m

l

2

d

du

V

✓
1

u

◆
(5)
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Integrable power law potentials

The resulting orbit is symmertric about two adjacent
turning points.

If the orbit is symmetric – possible to reflect it about the
direction of the turning angle without producing any
change.

Let the coordinates are chosen such that the turning point
occurs for ✓ = 0 – reflection can be e↵ected by subsituting
�✓ = ✓.

The di↵erential equation for the orbit is obviously
invarient under such a substitution.

The orbit is invariant under reflection about the apsidal
vectors.
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Integrable power law potentials

Any particular force law, the actual equation of the orbit
can be obtained by eliminating t from the solution.

d✓ =
l dr

mr

2

s
2

m


E � V (r)� l

2

2mr

2

� (6)

✓ =

Z
r

r0

l dr

0

r

02
r

2mE

l

2

� 2mV

l

2

� 1

r

02

+ ✓

0

(7)
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Integrable power law potentials

Changing the variable of the integration to u = 1/r

✓ = ✓

0

�
Z r

r0

l du

0
r

2mE

l

2

� 2mV

l

2

� u

02
(8)

The above integral can not be always expressed in terms of
well-known functions.

Only certain type of force laws – eg. power law functions

V = ar

n+1 (9)

Trigonometric functions : n = 1,�2,�3

Elliptic functions : n = 5, 3, 0,�4,�5,�7
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The Kepler problem: Inverse square law of force

The inverse square law is the most important of all the
central force laws – The force and potential

f = � k

r

2

, V = �k

r

(10)

Substituting V in Eq. (8)

✓ = ✓

0 �
Z

l dur
2mE

l

2

� 2mku

l

2

� u

2

(11)

where the integral is taken as idefinite.

✓

0 can be determined from the initial conditions – not
necessarily be the same as ✓

0

at t = 0.
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The Kepler problem: Inverse square law of force

The above equation is of the standard form

Z
dxp

↵+ �x+ �x

2

=
1p
��

cos�1

✓
�� + 2�x

p
q

◆
(12)

where q = �

2 � 4↵�. We have

↵ =
2mE

l

2

, � =
2mk

l

2

, � = �1 (13)

Therefore

q =

✓
2mk

l

2

◆
2

✓
1 +

2El

2

mk

2

◆
(14)
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The Kepler problem: Inverse square law of force

With these substitutions, eq. (11) becomes

✓ = ✓

0 � cos�1

0

BB@

l

2

u

mk

� 1
r
1 +

2El

2

mk

2

1

CCA . (15)

Solving for u = 1/r, the equation of the orbit is found to
be

1

r

=
mk

l

2

"
1 +

r
1 +

2El

2

mk

2

cos
�
✓ � ✓

0�
#

(16)

The constant of integration ✓

0 can be identified as one of
the turning angles of the orbit.
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The Kepler problem: Inverse square law of force

Integrating the conservation theorem for the angular
momentum mr

2

d✓ = l dt, by means of eq. (16), one must
additionally specify the initial angle ✓

0

.

Now, the general equation of a conic with one of the focus
at the origin is

1

r

= C

⇥
1 + e cos

�
✓ � ✓

0�⇤
, (17)

where e is the eccentricity of the conic section.

The orbit is always a conic section, with the eccentricity

e =

r
1 +

2El

2

mk

2

. (18)
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The Kepler problem: Inverse square law of force

The nature of the orbit depends upon the magnitude of e
according to the following:

e > 1, E > 0; hyperbola

e = 1, E = 0; parabola

e < 1, E < 0; ellipse

e = 0, E = �mk

2

2l2
; circle

The constant of integration ✓

0 can be identified as one of
the turning angles of the orbit.
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