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Integrable power law potentials

@ Solving the problem — finding r and 6 as functions of time
with F, [, etc., as constants.

o We really seek the equation of the orbit — the dependence
of r upon 0 (eliminating the parameter ¢).

o The relation between a differential change dt and the
corresponding change df

ldt = mr?df (1)

@ The relation between the derivaties

d Il d

L % 9
dt  mr? db (2)
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Integrable power law potentials

@ Recall Lagrange equation for the r coordinate
mi — mrf? = f(r) (3)

e Substituting d/dt in the above equation

1 d 1 dr l
it (et R S 4
r2 df <mr2 d9> mr3 f(r) )
e Substituting u = 1/r and expressing the results in terms
on potential
d’u m d 1
wr=ra (3 )
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Integrable power law potentials

@ The resulting orbit is symmertric about two adjacent
turning points.

o If the orbit is symmetric — possible to reflect it about the
direction of the turning angle without producing any
change.

o Let the coordinates are chosen such that the turning point
occurs for 8 = 0 — reflection can be effected by subsituting
—0=40.

o The differential equation for the orbit is obviously
invarient under such a substitution.

o The orbit is invariant under reflection about the apsidal
vectors.
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Integrable power law potentials

e Any particular force law, the actual equation of the orbit
can be obtained by eliminating ¢ from the solution.

40 — Ldr (6)

mr? 3 E—-V(r)— r
m 2mr?
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Integrable power law potentials

e Changing the variable of the integration to u = 1/r

U !/
9_90_/ ldu @)

The above integral can not be always expressed in terms of
well-known functions.

@ Only certain type of force laws — eg. power law functions

V =ar™™! 9)

(]

Trigonometric functions : n =1, -2, -3
Elliptic functions : n =5,3,0,—4, -5, -7

(]
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The Kepler problem: Inverse square law of force

e The inverse square law is the most important of all the
central force laws — The force and potential

k k
==, V=-2 10
f=-k vk (10)
e Substituting V in Eq. (8)
ldu

/ \/ 2mE ka‘u

— w2

where the integral is taken as idefinite.

@ 0 can be determined from the initial conditions — not
necessarily be the same as 0y at t = 0.
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The Kepler problem: Inverse square law of force

@ The above equation is of the standard form

dx 1 1 B+2yzx
/ JathrE <_\/§> 12

where ¢ = %2 — 4ay. We have

2mE 2mk
04217275:777:_1 (13)
Therefore
2mk\ 2 2F12
= == 1 14
= (%) (1+5%) a4
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The Kepler problem: Inverse square law of force

o With these substitutions, eq. (11) becomes

_mk____ | (15)

e Solving for u = 1/r, the equation of the orbit is found to

be

2EI?
1+4/1+ g €08 (6 — 0’)] (16)

@ The constant of integration 6’ can be identified as one of
the turning angles of the orbit.

Classical Mechanics

P. Muruganandam



The Kepler problem: Inverse square law of force

o Integrating the conservation theorem for the angular
momentum mr2df = [ dt, by means of eq. (16), one must
additionally specify the initial angle 6.

o Now, the general equation of a conic with one of the focus
at the origin is

%:C’[l—i—ecos (9—9')], (17)

where e is the eccentricity of the conic section.

o The orbit is always a conic section, with the eccentricity

2F1?
mk2’

e=1/1+ (18)
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The Kepler problem: Inverse square law of force

@ The nature of the orbit depends upon the magnitude of e
according to the following;:

e>1, E > 0 hyperbola
e=1, E=0; parabola
e<l1, E <0 ellipse

]{32
e =0, E = —737; circle

@ The constant of integration 6" can be identified as one of
the turning angles of the orbit.
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