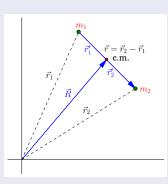
Classical Mechanics Central Force Motion

P. Muruganandam

School of Physics Bharathidasan University Tiruchirappalli -620024 India

Reduction to one body problem

- Consider a monogenic system of two mass points m_1 and m_2 the only forces are those due to an interaction potential U assumed to be any function of $\vec{r}_2 \vec{r}_1$ or of $\vec{r}_2 \vec{r}_1$, or of any higher derivatives of $\vec{r}_2 \vec{r}_1$.
- Six degrees of freedom six independent generalized coordinates:



- 3 components of the radius vector to the center of mass, \vec{R} .
- 3 components of the difference vector $\vec{r} = \vec{r}_2 \vec{r}_1$.
- Lagrangian

$$L = T(\dot{\vec{R}}, \dot{\vec{r}}) - U(\vec{r}, \dot{\vec{r}}, ..) \tag{1}$$

Reduction to one body problem

• Kinetic energy, T – written as the sum of K.E. of the motion of the c.m., plus the K.E. of motion about the c.m.

$$T = \frac{1}{2}(m_1 + m_2)\dot{\vec{R}}^2 + T', \text{ where } T' = \frac{1}{2}m_1\dot{\vec{r}}_1'^2 + \frac{1}{2}m_2\dot{\vec{r}}_2'^2.$$
(2)

• \vec{r}_1' and \vec{r}_2' – radii vectors of the two particles relative to the center of mass – are related to \vec{r} by

$$\vec{r}_1' = -\frac{m_2}{m_1 + m_2} \vec{r}$$
, and $\vec{r}_2' = \frac{m_1}{m_1 + m_2} \vec{r}$. (3)

• Then T' takes the form

$$T' = \frac{1}{2} \frac{m_1 m_2}{m_1 + m_2} \dot{\vec{r}}^2. \tag{4}$$

Reduction to one body problem

Total Lagrangian

$$L = \frac{1}{2}(m_1 + m_2)\dot{\vec{R}}^2 + \frac{1}{2}\frac{m_1m_2}{m_1 + m_2}\dot{\vec{r}}^2 - U(\vec{r}, \dot{\vec{r}}, \dots)$$
 (5)

- Three coordinates \vec{R} are cyclic the center of mass will be either at rest or moving uniformly.
- None of the equations of motion for \vec{r} will contain terms involving \vec{R} or $\dot{\vec{R}}$ simply drop the first term from the Lagrangian.
- A fixed center of force with single particle at a distance \vec{r} from it, having a mass (reduced mass)

$$\mu = \frac{m_1 m_2}{m_1 + m_2} \text{ or } \frac{1}{\mu} = \frac{1}{m_1} + \frac{1}{m_2}.$$
(6)

- Conservative central forces the potential is V(r), a function of $r = |\vec{r}|$ only.
- Spherical symmetry any rotation, about any fixed axis can have no effect on the solution.
- The angle coordinate must be cyclic (i.e., does not appear explicitly in the Lagrangian).
- The total angular momentum $\vec{L} = \vec{r} \times \vec{p}$ is conserved.
- \vec{r} is always perpendicular to the fixed direction of \vec{L} true only if \vec{r} lies in a plane whose normal is parallel to \vec{L} .
- This reasoning breaks down if $\vec{L} = 0$, which requires \vec{r} to be parallel to $\dot{\vec{r}}$ satisfied only in straight line motion.
- Central force motion is always motion in a plane

- Polar coordinates (r, θ, ψ) radial distance, azimuth angle, and zenith angle or colatitude.
- Using polar axis to be in the direction of \vec{L} the motion always occur in the plane perpendicular to the polar axis.
- ψ is constant value $\pi/2 \implies$ two degrees of freedom.
- Lagrangian in plane polar coordinates

$$L = \frac{1}{2}m\left(\dot{r}^2 + r^2\dot{\theta}^2\right) - V(r).$$
 (7)

• θ is a cyclic coordinate – the corresponding canonical momentum is the angular momentum

$$p_{\theta} = \frac{\partial L}{\partial \dot{\theta}} = mr^2 \dot{\theta} \tag{8}$$

• One of the two equations of motion

$$\dot{p}_{\theta} = \frac{d}{dt} \left(mr^2 \dot{\theta} \right) = 0 \implies mr^2 \dot{\theta} = l \tag{9}$$

l is the constant magnitude of the angular momentum. The above equation can also be written as

$$\frac{d}{dt}\left(\frac{1}{2}r^2\dot{\theta}\right) = 0$$
, where $\frac{1}{2}r^2\dot{\theta}$ is the *areal velocity* (10)

 \bullet The differential area swept out in time dt

$$dA = \frac{1}{2}r(rd\theta)$$
 and hence $\frac{dA}{dt} = \frac{1}{2}r^2\frac{d\theta}{dt}$ (11)

Hence

$$\frac{dA}{dt} = \frac{1}{2}r^2\frac{d\theta}{dt} \tag{12}$$

- Thus the conservation of angular momentum is equivalent to saying the areal velocity is constant.
- This is the proof of the well-known Kepler's second law of planetary motion A line joining a planet and the Sun sweeps out equal areas in equal intervals of time.
- The radial vector sweeps out equal areas in equal times.

• The remaining Lagrange equation, for the coordinate r

$$\frac{d}{dt}(m\dot{r}) - mr\dot{\theta}^2 + \frac{\partial V}{\partial r} = 0.$$
 (13)

$$m\ddot{r} - mr\dot{\theta}^2 = f(r), \tag{14}$$

where f(r) is the value of the force.

• Eliminating $\dot{\theta}$ using the relation $mr^2\dot{\theta} = l$ [see (9)],

$$m\ddot{r} - \frac{l^2}{mr^3} = f(r),\tag{15}$$

• There is another first integral – the total energy E (since the forces are conservative)

$$E = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\theta}^2) + V(r)$$
 (16)

One can rewrite eq. (15) as

$$m\ddot{r} = \frac{d}{dr}\left(V + \frac{1}{2}\frac{l^2}{mr^2}\right) \tag{17}$$

Multiply by \dot{r} on both sides of eq. (17). The right side becomes

$$m\ddot{r}\dot{r} = \frac{d}{dt} \left(\frac{1}{2} m \dot{r}^2 \right) \tag{18}$$

- The right side of eq. (17) can be written as a total time derivative.
- Then eq. (17) is equivalent to

$$\frac{d}{dt}\left(\frac{1}{2}m\dot{r}^2\right) = -\frac{d}{dt}\left(V + \frac{1}{2}\frac{l^2}{mr^2}\right),\tag{19}$$

or

$$\frac{d}{dt}\left(\frac{1}{2}m\dot{r}^2 + V + \frac{1}{2}\frac{l^2}{mr^2}\right) = 0,$$
 (20)

and therefore

$$\frac{1}{2}m\dot{r}^2 + V + \frac{1}{2}\frac{l^2}{mr^2} = \text{constant.}$$
 (21)

- The first two integrals give as the two quadratures necessary to complete the problem.
- Two variable r and θ four integrations are needed.
- The first two integrations left the Lagrange equations as the following two first order equations

$$mr^2\dot{\theta} = l \tag{22}$$

$$\frac{1}{2}m\dot{r}^2 + V + \frac{1}{2}\frac{l^2}{mr^2} = E. {23}$$

• Solving eq. (23) for \dot{r}

$$\dot{r} = \sqrt{\frac{2}{m} \left(E - V - \frac{l^2}{2mr^2} \right)},\tag{24}$$

• Equation (24) can be written as

$$dt = \frac{dr}{\sqrt{\frac{2}{m}\left(E - V - \frac{l^2}{2mr^2}\right)}},$$
 (25)

• At time t = 0 let $r = r_0$

$$t = \int_{r_0}^{r} \frac{dr}{\sqrt{\frac{2}{m} \left(E - V - \frac{l^2}{2mr^2}\right)}},$$
 (26)

• Once the solution for r is found, the solution θ can be written as

$$d\theta = \frac{ldt}{mr^2} \tag{27}$$

• Let θ_0 is the initial value of θ at t=0

$$\theta = l \int_0^t \frac{dt}{mr^2(t)} + \theta_0 \tag{28}$$

- A system of known energy and angular momentum the magnitude and direction of the velocity can be determined in terms of the distance r.
- ullet The magnitude v of the velocity from the conservation of energy

$$E = \frac{1}{2}mv^2 + V(r) \implies v = \sqrt{\frac{2}{m}[E - V(r)]}$$
 (29)

• The equation of motion expressed in r (with $\dot{\theta}$ expressed in terms of l) involves only r and its derivatives

• The same equation can be obtained for a fictitious one-dimensional problem – a particle of mass m subject to a force

$$f' = f + \frac{l^2}{mr^3} \tag{30}$$

- The significance of the additional term is clear if it is written as $mr\dot{\theta}^2 = mv_{\theta}^2/r$ centrifugal force.
- A one-dimensional problem with fictitious potential energy

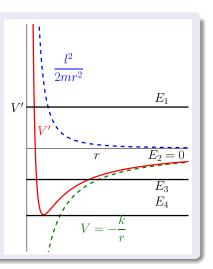
$$V' = V + \frac{1}{2} \frac{l^2}{mr^2} \implies f' = -\frac{\partial V}{\partial r} = f(r) + \frac{l^2}{mr^3} \quad (31)$$

• Consider the plot of V' against r for the specific case of an attractive inverse-square law of force.

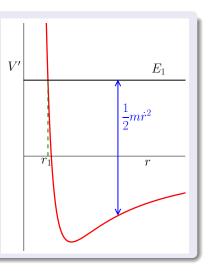
$$f = -\frac{k}{r^2}, \ V = -\frac{k}{r}$$
 (32)

 k > 0 - the minus sign ensures that the force is toward the center of force.

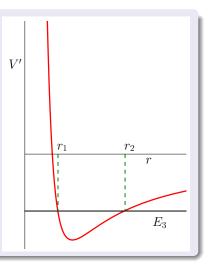
$$V' = -\frac{k}{r} + \frac{l^2}{2mr^2}$$
 (33)



- Consider the motion of a particle having energy E_1 .
- This particle can never come closer than r_1 .
- If $r < r_1, V'$ exceeds E_1 .
- K.E. negative \Longrightarrow imaginary velocity!! (physically not possible)
- There is no upper limit for r \implies the orbit is not bounded

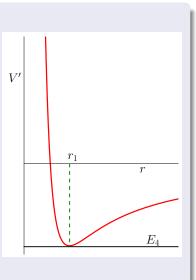


- Energy E_3 : lower bound r_1 also a maximum value of r_2 that cannot be exceeded by r with positive kinetic energy.
- The motion is bounded two turning points, r_1 and r_2 apsidal distances.
- This does not mean that the orbit is closed the motion is contained between two circles of radius r_1 and r_2 .



- Energy is E_4 at the minimum of the fictitious potential at the point where the two bounds coincide.
- Motion is possible at only one radius: $\dot{r} = 0$ the orbit is a circle
- The effective "force" is negative of the slope of the V'curve – for circular orbit f' = 0

$$f(r) = -\frac{l^2}{mr^2} = -mr\dot{\theta}^2.$$
 (34)



- Condition for a circular orbit is that the applied force be equal and opposite to the "reverse effective force" of the centripetal acceleration.
- The above discussion of the orbits for various energies at one value of l (angular momentum).
- Changing the value of l will change only the qualitative details but it does not affect the results.

Summary

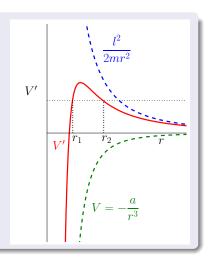
Attractive inverse square law of force

- Hyperbola for $E = E_1 > 0$
- Parabola for $E = E_2 = 0$
- Ellipse for $E_3 < 0$

• Attractive potential

$$V(r) = -\frac{a}{r^3},$$
$$f(r) = -\frac{3a}{r^4}$$

- $r_0 < r_1$ bounded motion pass through center of force.
- $r_0 > r_2$ motion is unbounded.
- $r_1 < r_0 < r_2$ not physically possible



Spherical pendulum

• Linear harmonic oscillator

$$V(r) = \frac{1}{2}kr^2,$$

$$f(r) = -kr$$

- l = 0 motion along straight line (V' = V) – bounded for E > 0 (simple harmonic).
- l ≠ 0 always bounded does not pass through center of force – elliptic orbit

$$f_x = -kx, \quad f_y = -ky \quad (35)$$

