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Reduction to one body problem

Consider a monogenic system of
two mass points m

1

and m

2

–
the only forces are those due to
an interaction potential U –
assumed to be any function of
r

2

� r

1

or of r
2

� r

1

, or of any
higher derivatives of r

2

� r

1

.

Six degrees of freedom – six
independent generalized
coordinates:

m1

m2

c.m.

~R

~r = ~r2 � ~r1

~r1

~r2

~r0
1

~r0
2

3 components of the radius vector to the center of mass, R.

3 components of the di↵erence vector r = r

2

� r

1

.

Lagrangian

L = T (R, r) � U(r, r, ..) (1)
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Reduction to one body problem

Kinetic energy, T – written as the sum of K.E. of the
motion of the c.m., plus the K.E. of motion about the c.m.

T =
1

2
(m

1

+m

2

)R2 + T

0
, where T

0 =
1

2
m

1

r

0
2

1

+
1

2
m

2

r

0
2

2

.

(2)

r

0
1

and r

0
2

– radii vectors of the two particles relative to the
center of mass – are related to r by

r

0
1

= � m

2

m

1

+m

2

r, and r

0
2

=
m

1

m

1

+m

2

r. (3)

Then T

0 takes the form

T

0 =
1

2

m

1

m

2

m

1

+m

2

r

2

. (4)
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Reduction to one body problem

Total Lagrangian

L =
1

2
(m

1

+m

2

)R2 +
1

2

m

1

m

2

m

1

+m

2

r

2 � U(r, r, . . .) (5)

Three coordinates R are cyclic – the center of mass will be
either at rest or moving uniformly.

None of the equations of motion for r will contain terms

involving R or R – simply drop the first term from the
Lagrangian.

A fixed center of force with single particle at a distance r

from it, having a mass (reduced mass)

µ =
m

1

m

2

m

1

+m

2

or
1

µ

=
1

m

1

+
1

m

2

. (6)
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Equation of motion

Conservative central forces – the potential is V (r), a
function of r = |r| only.
Spherical symmetry – any rotation, about any fixed axis
can have no e↵ect on the solution.

The angle coordinate must be cyclic (i.e., does not appear

explicitly in the Lagrangian).

The total angular momentum L = r ⇥ p is conserved.

r is always perpendicular to the fixed direction of L – true
only if r lies in a plane whose normal is parallel to L.

This reasoning breaks down if L = 0, which requires r to
be parallel to r – satisfied only in straight line motion.

Central force motion is always motion in a plane
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Equation of motion

Polar coordinates (r, ✓, ) – radial distance, azimuth angle,
and zenith angle or colatitude.

Using polar axis to be in the direction of L – the motion
always occur in the plane perpendicular to the polar axis.

 is constant value ⇡/2 =) two degrees of freedom.

Lagrangian in plane polar coordinates

L =
1

2
m

⇣
ṙ

2 + r

2

✓̇

2

⌘
� V (r). (7)

✓ is a cyclic coordinate – the corresponding canonical
momentum is the angular momentum

p

✓

=
@L

@✓̇

= mr

2

✓̇ (8)
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Equation of motion

One of the two equations of motion

ṗ

✓

=
d

dt

⇣
mr

2

✓̇

⌘
= 0 =) mr

2

✓̇ = l (9)

l is the constant magnitude of the angular momentum.
The above equation can also be written as

d

dt

✓
1

2
r

2

✓̇

◆
= 0, where

1

2
r

2

✓̇ is the areal velocity (10)

The di↵erential area swept out in time dt

dA =
1

2
r (rd✓) and hence

dA

dt

=
1

2
r

2

d✓

dt

(11)
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Equation of motion

Hence

dA

dt

=
1

2
r

2

d✓

dt

(12)

Thus the conservation of angular momentum is equivalent
to saying the areal velocity is constant.

This is the proof of the well-known Kepler’s second law of
planetary motion – A line joining a planet and the Sun

sweeps out equal areas in equal intervals of time.

The radial vector sweeps out equal areas in equal times.
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Equation of motion

The remaining Lagrange equation, for the coordinate r

d

dt

(mṙ) � mr✓̇

2 +
@V

@r

= 0. (13)

mr̈ � mr✓̇

2 = f(r), (14)

where f(r) is the value of the force.

Eliminating ✓̇ using the relation mr

2

✓̇ = l [see (9)],

mr̈ � l

2

mr

3

= f(r), (15)
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Equation of motion

There is another first integral – the total energy E (since
the forces are conservative)

E =
1

2
m

⇣
ṙ

2 + r

2

✓̇

2

⌘
+ V (r) (16)

One can rewrite eq. (15) as

mr̈ =
d

dr

✓
V +

1

2

l

2

mr

2

◆
(17)

Multiply by ṙ on both sides of eq. (17). The right side
becomes

mr̈ṙ =
d

dt

✓
1

2
mṙ

2

◆
(18)

P. Muruganandam Classical Mechanics



Equation of motion

The right side of eq. (17) can be written as a total time
derivative.

Then eq. (17) is equivalent to

d

dt

✓
1

2
mṙ

2

◆
= � d

dt

✓
V +

1

2

l

2

mr

2

◆
, (19)

or

d

dt

✓
1

2
mṙ

2 + V +
1

2

l

2

mr

2

◆
= 0, (20)

and therefore

1

2
mṙ

2 + V +
1

2

l

2

mr

2

= constant. (21)
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Equation of motion

The first two integrals give as the two quadratures
necessary to complete the problem.

Two variable r and ✓ – four integrations are needed.

The first two integrations left the Lagrange equations as
the following two first order equations

mr

2

✓̇ = l (22)

1

2
mṙ

2 + V +
1

2

l

2

mr

2

= E. (23)

Solving eq. (23) for ṙ

ṙ =

s
2

m

✓
E � V � l

2

2mr

2

◆
, (24)
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Equation of motion

Equation (24) can be written as

dt =
drs

2

m

✓
E � V � l

2

2mr

2

◆ , (25)

At time t = 0 let r = r

0

t =

Z
r

r0

drs
2

m

✓
E � V � l

2

2mr

2

◆ , (26)
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Equation of motion

Once the solution for r is found, the solution ✓ can be
written as

d✓ =
ldt

mr

2

(27)

Let ✓
0

is the initial value of ✓ at t = 0

✓ = l

Z
t

0

dt

mr

2(t)
+ ✓

0

(28)
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Classification of Orbits

A system of known energy and angular momentum – the
magnitude and direction of the velocity can be determined
in terms of the distance r.

The magnitude v of the velocity from the conservation of
energy

E =
1

2
mv

2 + V (r) =) v =

r
2

m

[E � V (r)] (29)

The equation of motion expressed in r (with ✓̇ expressed in
terms of l) involves only r and its derivatives
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Classification of Orbits

The same equation can be obtained for a fictitious
one-dimensional problem – a particle of mass m subject to
a force

f

0 = f +
l

2

mr

3

(30)

The significance of the additional term is clear if it is
written as mr✓̇

2 = mv

2

✓

/r – centrifugal force.

A one-dimensional problem with fictitious potential energy

V

0 = V +
1

2

l

2

mr

2

=) f

0 = �@V
@r

= f(r) +
l

2

mr

3

(31)
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Classification of Orbits

Consider the plot of V 0

against r for the specific
case of an attractive

inverse-square law of force.

f = � k

r

2

, V = �k

r

(32)

k > 0 – the minus sign
ensures that the force is
toward the center of force.

V

0 = �k

r

+
l

2

2mr

2

(33)

E1

E2 = 0

E3

E4

V 0

r

V 0

l2

2mr2

V = �k

r
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Classification of Orbits

Consider the motion of a
particle having energy E

1

.

This particle can never come
closer than r

1

.

If r < r

1

, V 0 exceeds E
1

.

K.E. negative =)
imaginary velocity!!
(physically not possible)

There is no upper limit for r
=) the orbit is not
bounded

E1

r1

1

2
mṙ2

r

V 0
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Classification of Orbits

Energy E

3

: lower bound r

1

– also a maximum value of
r

2

that cannot be exceeded
by r with positive kinetic
energy.

The motion is bounded –
two turning points, r

1

and
r

2

– apsidal distances.

This does not mean that the
orbit is closed – the motion
is contained between two
circles of radius r

1

and r

2

.
E3

r1 r2

r

V 0
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Classification of Orbits

Energy is E
4

at the minimum
of the fictitious potential – at
the point where the two
bounds coincide.

Motion is possible at only one
radius: ṙ = 0 – the orbit is a
circle

The e↵ective “force” is
negative of the slope of the V

0

curve – for circular orbit
f

0 = 0

f(r) = � l

2

mr

2

= �mr✓̇

2

.

(34)

E4

r1

r

V 0
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Classification of Orbits

Condition for a circular orbit is that the applied force be

equal and opposite to the “reverse e↵ective force” of the

centripetal acceleration.

The above discussion of the orbits for various energies – at
one value of l (angular momentum).

Changing the value of l will change only the qualitative
details – but it does not a↵ect the results.

Summary

Attractive inverse square law of force

Hyperbola for E = E

1

> 0

Parabola for E = E

2

= 0

Ellipse for E
3

< 0
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Classification of Orbits

Attractive potential

V (r) = � a

r

3

,

f(r) = �3a

r

4

r

0

< r

1

– bounded motion –
pass through center of force.

r

0

> r

2

– motion is
unbounded.

r

1

< r

0

< r

2

– not physically
possible

r1 r2

V 0

rV 0

l2

2mr2

V = � a

r3
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Classification of Orbits

Spherical pendulum

Linear harmonic oscillator

V (r) =
1

2
kr

2

,

f(r) = �kr

l = 0 – motion along straight
line (V 0 = V ) – bounded for
E > 0 (simple harmonic).

l 6= 0 – always bounded –
does not pass through center
of force – elliptic orbit

f

x

= �kx, f

y

= �ky (35)

E

r1 r2

V 0

r

V 0

l2

2mr2

V
=

�
1 2k

r2
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