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Reduction to one body problem

o Consider a monogenic system of
two mass points m; and mg —
the only forces are those due to AN
an interaction potential U — } b
assumed to be any function of _ T
Py — 71 or of 79 — 7', or of any B
higher derivatives of 7y — 7. / /

o ll
B

o Six degrees of freedom — six
independent generalized

coordinates: -
@ 3 components of the radius vector to the center of mass, R.

o 3 components of the difference vector 7 = 7y — 7.

Lagrangian
L=T(R,?)-U®#%..) (1)
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Reduction to one body problem

o Kinetic energy, T' — written as the sum of K.E. of the
motion of the c.m., plus the K.E. of motion about the c.m.

1 =, 1 . 1 ,
= §(m1 +mg)R? + T, where T' = —m 72 + —mpyi'y.

2 2
(2)
° F’l and ?/2 — radii vectors of the two particles relative to the
center of mass — are related to 7 by

’ m ’ m
Fl=——"2 7 and g = ——7 (3)
my1 + mg m1 + mgo

o Then 7" takes the form

1 mimo .

/ =2

—_  —— . 4
2m1+m2r (4)
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Reduction to one body problem

o Total Lagrangian

1 2o 1 mima - :
L==(m+m)R*+-———U®FT,... 5
2( ! 2) 2my + mao ("7,.) (5)

e Three coordinates R are cyclic — the center of mass will be
either at rest or moving uniformly.

e None of the equations of motion for 7 will contain terms
involving Ror R - simply drop the first term from the
Lagrangian.

o A fixed center of force with single particle at a distance 7
from it, having a mass (reduced mass)

M1 1 1 1
/L:#orf:—+—. (6)

mi + meo o) mi mo
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Equation of motion

e Conservative central forces — the potential is V'(r), a
function of r = |7| only.

e Spherical symmetry — any rotation, about any fixed axis
can have no effect on the solution.

@ The angle coordinate must be cyclic (i.e., does not appear
explicitly in the Lagrangian).

o The total angular momentum L =7 x P is conserved.

e 7 is always perpendicular to the fixed direction of fﬂf true
only if 7 lies in a plane whose normal is parallel to L.

@ This reasoning breaks down if L= 0, which requires 7 to
be parallel to 7 — satisfied only in straight line motion.

o Central force motion is always motion in a plane
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Equation of motion

e Polar coordinates (7, 0,1) — radial distance, azimuth angle,
and zenith angle or colatitude.

(]

Using polar axis to be in the direction of L — the motion
always occur in the plane perpendicular to the polar axis.

1 is constant value 7/2 = two degrees of freedom.

Lagrangian in plane polar coordinates

L= %m (7 +28) ~ Vo). (7)

0 is a cyclic coordinate — the corresponding canonical
momentum is the angular momentum

oL

==5= mr?6 (8)

Po
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Equation of motion

@ One of the two equations of motion

d ) )
Do = = <mr29) =0 = mrif=1 9)
[ is the constant magnitude of the angular momentum.
The above equation can also be written as

d 1 2 b _ ]./.2 by . o . 3,' ,
s <2r 0> =0, where 3" 6 is the areal velocity (10)

o The differential area swept out in time dt

1 dA 1 ,df
dA = 5" (rdf) and hence =3 % (11)
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Equation of motion

o Hence

dA 1 ,df

@ Thus the conservation of angular momentum is equivalent
to saying the areal velocity is constant.

o This is the proof of the well-known Kepler’s second law of
planetary motion — A line joining a planet and the Sun
sweeps out equal areas in equal intervals of time.

o The radial vector sweeps out equal areas in equal times.
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Equation of motion

@ The remaining Lagrange equation, for the coordinate r

d , . o OV
= (mr) — mré* + e 0. (13)
mit —mrf* = f(r), (14)

where f(r) is the value of the force.
o Eliminating § using the relation ms20 = [ [see (9)],
l2
mit — — = f(r), (15)

mr3
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Equation of motion

@ There is another first integral — the total energy F (since
the forces are conservative)

E= %m (7'«2 + r2é2) +V(r) (16)

One can rewrite eq. (15) as

. d 1 2
Multiply by 7 on both sides of eq. (17). The right side
becomes
L. od (1,
==z 1
miT = o <2m7‘ ) (18)
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Equation of motion

e The right side of eq. (17) can be written as a total time
derivative.

e Then eq. (17) is equivalent to

d (1 ., d 12
el e = e - 19
dt <2mr> dt< 2mr2>’ (19)
or
d B, 1 72

and therefore

(R 12
g™ +V+ S = constant. (21)

P. Muruganandam Classical Mechanics



Equation of motion

o The first two integrals give as the two quadratures
necessary to complete the problem.

o Two variable r and 6 — four integrations are needed.

o The first two integrations left the Lagrange equations as
the following two first order equations
mr?0 =1 (22)

! '2+V+1i—E (23)
" 2mr2

e Solving eq. (23) for r

%n (-7 - rs), o

P. Muruganandam Classical Mechanics




Equation of motion

e Equation (24) can be written as

dt = : (25)

o At time t =0 let r =1y
t_/ > )
7o 2 l
—(E-V -
\/m( 2mr2>

P. Muruganandam Classical Mechanics

(26)




Equation of motion

@ Once the solution for r is found, the solution 6 can be
written as
ldt
dd = — 27
e (27)
o Let 6 is the initial value of 8 at t =0
bodt
0=1 ——+10 2
o mr2(t) + (28)
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Classification of Orbits

o A system of known energy and angular momentum — the
magnitude and direction of the velocity can be determined
in terms of the distance 7.

o The magnitude v of the velocity from the conservation of
energy

1 2
E = §mv2 +V(r) = v= o [E-V()] (29)
@ The equation of motion expressed in r (with 0 expressed in
terms of 1) involves only r and its derivatives
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Classification of Orbits

@ The same equation can be obtained for a fictitious
one-dimensional problem — a particle of mass m subject to
a force
/ &
= — 30
f=ft— (30)
o The significance of the additional term is clear if it is
written as mr6? = mv3/r — centrifugal force.

@ A one-dimensional problem with fictitious potential energy
12 ov 12
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Classification of Orbits

e Consider the plot of V’
against r for the specific
case of an attractive
tmverse-square law of force.

k k

f=— V=—2 (3)

@ k > 0 — the minus sign
ensures that the force is
toward the center of force.

yie b, F

r  2mr2

(33)

V/
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Classification of Orbits

Consider the motion of a
particle having energy FEj.
This particle can never come
closer than rq.

If r <7, V' exceeds Fj.
K.E. negative —
imaginary velocity!!
(physically not possible)
There is no upper limit for r

— the orbit is not
bounded

V/

E,

—-mr

2

(|
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Classification of Orbits

o Energy F3: lower bound r;
— also a maximum value of
r9 that cannot be exceeded
by r with positive kinetic
energy.

o The motion is bounded —
two turning points, r; and
ro — apsidal distances.

@ This does not mean that the
orbit is closed — the motion
is contained between two
circles of radius r; and rs.

1 )
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Classification of Orbits

o Energy is F4 at the minimum
of the fictitious potential — at
the point where the two
bounds coincide. v
o Motion is possible at only one
radius: 7 = 0 — the orbit is a
circle

o The effective “force” is
negative of the slope of the V’
curve — for circular orbit

f=0

12 .
f(r) = —— = —mré>.

mr2
(34)
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Classification of Orbits

o Condition for a circular orbit is that the applied force be
equal and opposite to the “reverse effective force” of the
centripetal acceleration.

o The above discussion of the orbits for various energies — at
one value of [ (angular momentum).

o Changing the value of [ will change only the qualitative
details — but it does not affect the results.

Summary

Attractive inverse square law of force
e Hyperbola for £ = F; > 0
o Parabola for £ = F9 =0
o Ellipse for E3 <0

v
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Classification of Orbits

e Attractive potential FE,
v
a ‘\ 2mr2
V(T‘) _ _ﬁ, “\ mr
3a 1% R
7" - — e _,44?,\4 4444444444444444444444444
fr)=-5
@ 19 < 11 — bounded motion — e rQ PP e
pass through center of force. / o
@ rp > r9 — motion is ,:'
unbounded. N u
@ r1 < 19 < ro — not physically ! V= T
possible '
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Classification of Orbits

Spherical pendulum

@ Linear harmonic oscillator
1
V(r)= 5k7’2,
F(r) = —kr

o [ = 0 — motion along straight
line (V' = V) — bounded for
E > 0 (simple harmonic).

o [ # 0 — always bounded — 1%
does not pass through center
of force — elliptic orbit

fo = —kx, fy=—ky (35) a
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