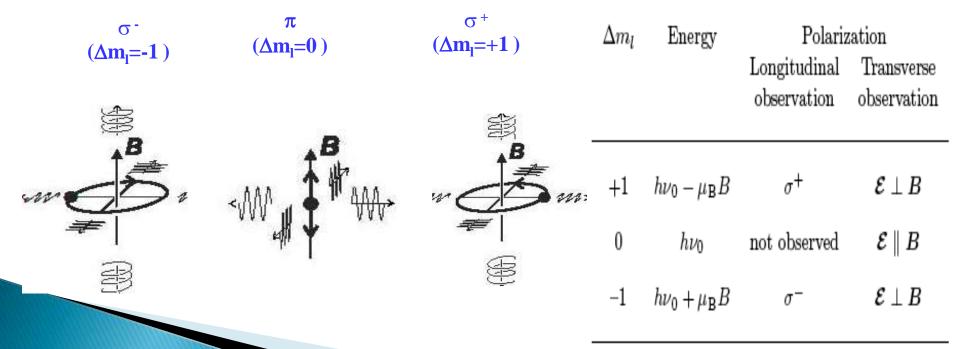

Atomic and Molecular Physics

Ву

Prof. S. Arumugan
Department of Physics
Bharathidasan University
Trichy – 24.

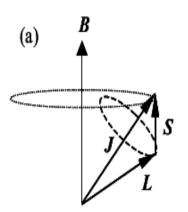
Zeeman effect

- Observed in atoms with no spin.
- Total spin of an *N*-electron atom is $\hat{S} = \sum_{i=1}^{N} \hat{S}_{i}$


- Filled shells have no net spin, so only consider valence electrons. Since electrons have spin 1/2, not possible to obtain S = 0 from atoms with odd number of valence electrons.
- Even number of electrons can produce *S* = 0 state (e.g., for two valence electrons, *S* = 0 or 1).
- All ground states of Group II (divalent atoms) have ns² configurations => always have S = 0 as two electrons align with their spins antiparallel.
- Magnetic moment of an atom with $\hat{\mu}_{\overline{n}} = \frac{\mu_B}{s_B} \hat{h}_{in}$ will be due entirely to exbital motion:

Normal Zeeman effect transitions

- Longitudinal Zeeman effect: Observing along magnetic field, photons must propagate in z-direction.
 - Light waves are transverse, and so only x and y polarizations are possible.
 - The z-component $(\Delta m_l = 0)$ is therefore absent and only observe $\Delta m_l = \pm 1$.
 - Termed σ -components and are circularly polarized.
- Transverse Zeeman effect: When observed at right angles to the field, all three lines are present.
 - $\Delta m_i = 0$ are linearly polarized | | to the field.
 - Δm_l = ±1 transitions are linearly polarized at right angles to field.


Zeeman effect transitions

- Last two columns of table below refer to the polarizations observed in the longitudinal and transverse directions.
- The direction of circular polarization in the longitudinal observations is defined relative to *B*.
- Interpretation proposed by Lorentz (1896)

Anomalous Zeeman effect

Discovered by Thomas Preston in Dublin in 1897.

 Occurs in atoms with non-zero spin => atoms with electrons.

- In *LS*-coupling, the spin-orbit interaction couples the spin and orbital angular momenta to give a total angular momentum according to $\hat{J} = \hat{I}_c + \hat{S}$
- In an applied B-field, J precesses about B at the Larmor frequency.
- L and S precess more rapidly about J to due to spin-orbit interaction. Spin-orbit effect therefore stronger.