DRUG FORMULATION & DRUG DELIVERY SYSTEM

Dr. M.B. VISWANATHAN

Programme Coordinator, School of Life Sciences & Professor, Department of Botany
Bharathidasan University, Tiruchirappalli 620024

Role of the drug formulation on its delivery to systemic circulation

- The role of the drug formulation in the delivery of drug to the site of action should not be ignored.
- With any drug it is possible to alter its bioavailability considerably by formulation modification.
- Bioavailability of a drug from different dosage forms would decrease in the order solution > suspension > capsule > tablet > coated tablet.
- There may be some exceptions but the order provides a a useful guide as is the case with pentobarbital: aqueous solution > aqueous suspension = capsule > tablet of free acid form.

Solutions

 Drugs are commonly given in solution in cough/cold remedies and in medication for the young and elderly.

- In most cases absorption from an oral solution is rapid and complete, compared with administration in any other oral dosage form.
- The rate limiting step is often the rate of gastric emptying.

Solutions

••••

- A poor water soluble drug such as phenytoin presented as a well formulated suspension, of finely divided powder, may have a better bioavailability.
- Some drugs which are poorly soluble in water may be dissolved in mixed water/alcohol or glycerol solvents.
- This is particularly useful for compounds with tight crystal structure, higher melting points that are not ionic. The crystal structure is broken by solution in the mixed solvent.

Suspensions

 A well formulated suspension is second only to a solution in terms of superior bioavailability.

 Absorption may well be dissolution-limited, however a suspension of a finely divided powder will maximize the potential for rapid dissolution.

 A good correlation can be seen for particle size and absorption rate.

Suspensions

• With very fine particle sizes the dispersibility of the powder becomes important.

- The addition of a surface active agent will improve dispersion of a suspension
 - may improve the absorption of very fine particle size suspensions for which caking may otherwise be a problem.

Capsules

- In theory a capsule dosage form should be quite efficient.
- The hard gelatin shell should disrupt rapidly and allow the contents to be mixed with the G-I tract contents.
- The capsule contents should not be subjected to high compression forces which would tend to reduce the effective surface area

Capsules.....

Thus a capsule should perform better than a tablet.
 This is not always the case.

- If a drug is hydrophobic a dispersing agent should be added to the capsule formulation.
- These diluents will work to disperse the powder, minimize aggregation and maximize the surface area of the powder.

Tablets

 The tablet is the most commonly used oral dosage form.

It is also quite complex in nature.

 The biggest problem is overcoming the reduction in effective surface area produced during the compression process.

Ingredients

 Tablet ingredients include materials to break up the tablet formulation - ??

Drug - may be poorly soluble, hydrophobic

Lubricant - usually quite hydrophobic

Granulating agent - tends to stick the ingredients together

Tablet Ingredients

•••••

- Filler may interact with the drug, etc., should be water soluble
- Wetting agent helps the penetration of water into the tablet
- Disintegration agent helps to break the tablet apart
- Coating agent places additional barrier to drug dissolution.

Sustained release tablets

 "Modified release Dosage forms" This topic and the area of sustained release products will be discussed in more detail in other courses.

Benefits

- for short half-life drugs, sustained release can mean less frequent dosing and thus better compliance.
- reduce variations in plasma/blood levels for more consistent result.

Problems with sustained-release drug formulations

- More complicated formulation may be more erratic in result.
- A sustained release product may contain a larger dose, i.e. the dose for two or three (or more) 'normal' dosing intervals.
- A failure of the controlled release mechanism may result in release of a large toxic dose.
- More expensive technology

In vitro dosage form testing & evaluation

Disintegration

 Disintegration time is the time to pass through a sieve while agitated in a specified fluid.

 It indicates the time to break up into small particles, not necessarily the time to go into solution.

Dissolution Rate

- Assesses the time is takes for the drug to dissolve from the dosage form.
- Numerous factors affect dissolution.
 - Dissolution medium (may be water, simulated gastric juice, or 0.1M HCl))
 - Agitation intensity
 - Temperature (usually 37°C) are carefully controlled.
 - The apparatus and specifications may be found in the BP/USP.

Dissolution Rate *Methodology*

Other unofficial methods are used because they may be faster, cheaper, easier, sensitive to a particular problem for a particular drug, or developed by a particular investigator.

In-vitro/In vivo correlations (IVIVIC)

 Dissolution tests are used as quality control to measure variability between batches which may be reflected by *in vivo* performance.

• In vitro test may be a quick method of ensuring in vivo performance and considerable work aimed at defining the in vitro/in vivo correlation has been done.

Types of drugs and their forms

Zidovudine Oral Solution

Didanosine Powder (reconstitute with antacid)

Lamivudine Oral Solution

Abacavir Oral Solution

Nevirapine Suspension

Efavirenz Capsules (50 mg for 7 kg patient)

Ritonavir Solution

Nelfinavir mesylate Oral Powder (mix with foods)

Amprenavir Oral Solution (propylene glycol)

Lopinavir/Ritonavir Oral Solution

Acyclovir Oral Suspension

Ribavirin Powder for Inhalation Solution

Oseltamavir phosphate Suspension

Principles of Drug Delivery

Drug Delivery

Definition

- The appropriate administration of drugs through various routes in the body for the purpose of improving health
- It is highly interdisciplinary
- It is not a young field
- It has recently evolved to take into consideration
 - Drug physico-chemical properties
 - Body effects and interactions
 - Improvement of drug effect
 - Patient comfort and well being

Controlled Drug Delivery

Drug Delivery Controlled Conventional Enteral Sustained Extended Parenteral Site-specific Other **Pulsatile**

Oral Administration

Advantages

- Patient: Convenience, not invasive, higher compliance
- Manufacture: well established processes, available infrastructure

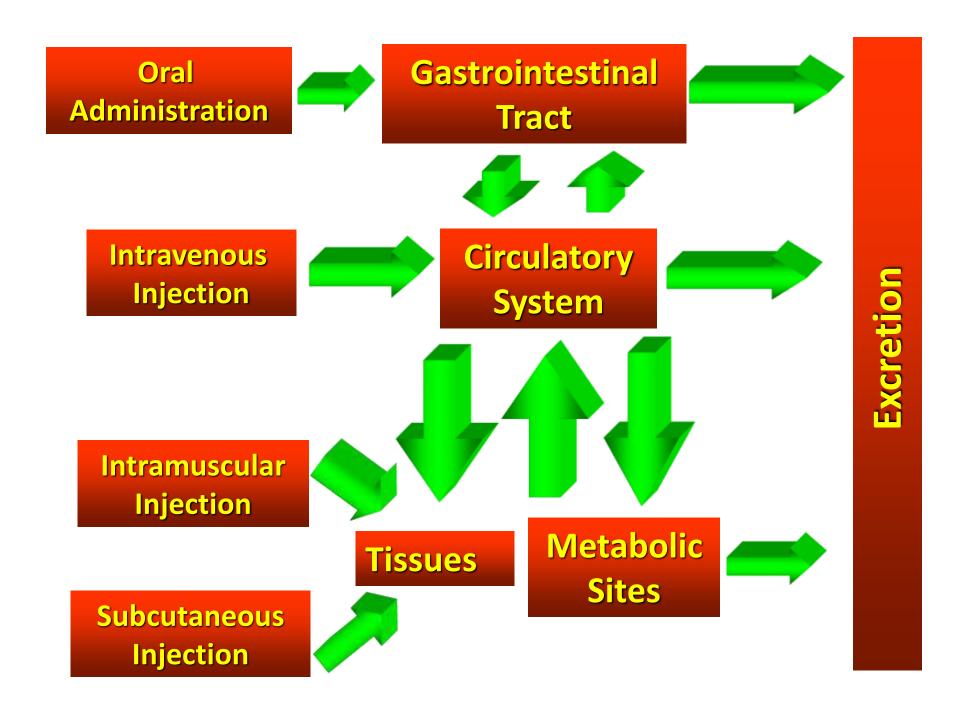
Disadvantages

- Unconscious patients cannot take dose
- Low solubility
- Low permeability
- Degradation by GI enzymes or flora
- First pass metabolism
- Food interactions
- Irregular absorption

Factors Influencing the Selection of the Delivery Route

- Drug physico-chemical properties
 - Drug molecular size (molecular weight)
 - Half-life
 - Chemical stability
 - Loss of biological activity in aqueous solution
 - Proteins
 - Denaturation, degradation

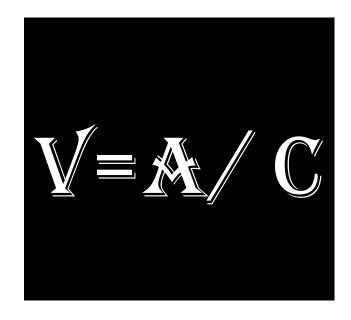
Factors Influencing the Selection of the Delivery Route


- Solubility in aqueous solution (hydrophobicity/hydrophilicity)
 - pH
 - pKa ionization
 - Temperature
 - Concentration
 - Crystalinity
 - Particle size
 - State of hydration

Factors Influencing the Selection of the Delivery Route

- Drug biological interactions
 - Sensitive to FPM
 - Low membrane permeabiltiy
 - Efflux pumps (MRP, MDR) cancer drugs
 - Hydrophilicity
 - High-density charge
 - Enzymatic degradation
 - Bacterial degradation
 - Half-life
 - Side effects
 - Irritation

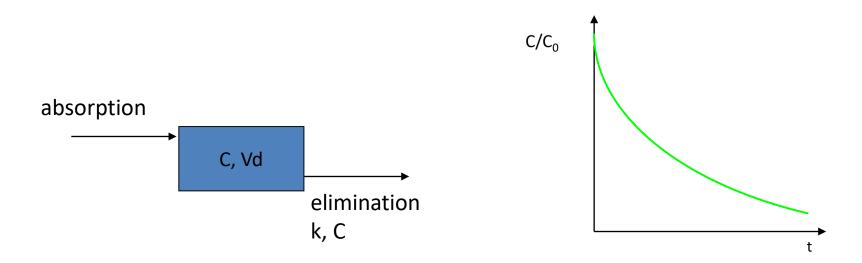
Manufacture of Classical Oral Delivery Systems


- Formulation combination of active ingredients with the appropriate excipients
- Excipients inactive ingredients employed for the purpose of dilution, protection, stability, controlled release, taste, fillers, coloring, disintegration, etc

Important Concepts

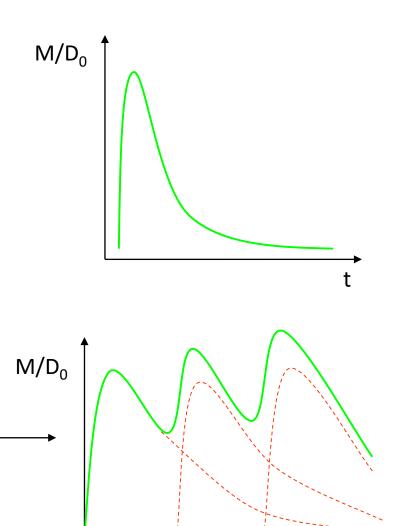
Volume of distribution

- apparent volume into
 which a drug distributes
 in the body at
 equilibrium
- direct measure of the extent of distribution
- V = amount of drug in the body/Plasma drug concentration

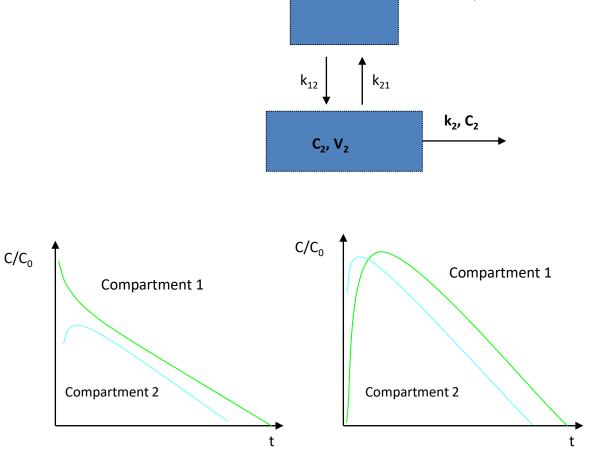


Mathematical Modeling of Drug Disposition

- Single compartment
- Single compartment with absorption
- Two compartments
- Two compartments with absorption


Single Compartment Model

- Assumptions:
 - Body one compartment characterized by a volume of distribution (V_d)
 - Drug is confined to the plasma (small V)


One-Compartment Model with Absorption

- Low absorption occurs
- Absorption is the ratelimiting step
- Slow absorption may represent drug entry through GI tract or leakage into circulation after SC injection
- Drugs require multiple doses to maintain drug concentration within therapeutic window

Two-Compartment Model

- Drug rapidly injected
- Drug distributed instantaneously throughout one compartment and slowly throughout second compartment
- Describes drug concentration in plasma injected IV

 k_1, C_1

C₁, V₁

Determination of the Efficacy of the Delivery Route

Bioavailability (F)

- Fraction of the drug that reached the systemic circulation
- According to the FDA, Food, Drug, and Cosmetic Act
 - "The rate and extent to which an active ingredient or active moiety is absorbed from a drug product and becomes available at the site of action. For drugs that are not intended to be absorbed in the bloodstream, bioavailability may be assessed by measurements intended to reflect the rate and extent to which the active ingredient or active moiety becomes available at the site of action."

Factors Influencing Bioavailabilty

- Delivery route
- The site of measurement
- Type of animal employed
- Physiological state of the animal/human
 - Disease
 - Anesthesia

