Dr. M. Sathiyabama Associate Professor Department of Botany

Plant Molecular Systematics

Types of molecular data?

DNA sequences

DNA restriction sites: RFLPs

Allozymes - different forms of proteins

Microsatellites - DNA regions w/tandem repeats

RAPDs - Random Amplification of Polymorphic DNA

AFLPs - Amplified Fragment Length Polymorphism

How are Plant Molecular Data Acquired?

Plant collected: voucher prepared!

Live samples, e.g., allozyme analysis

Dried or liquid-preserved samples, e.g.,

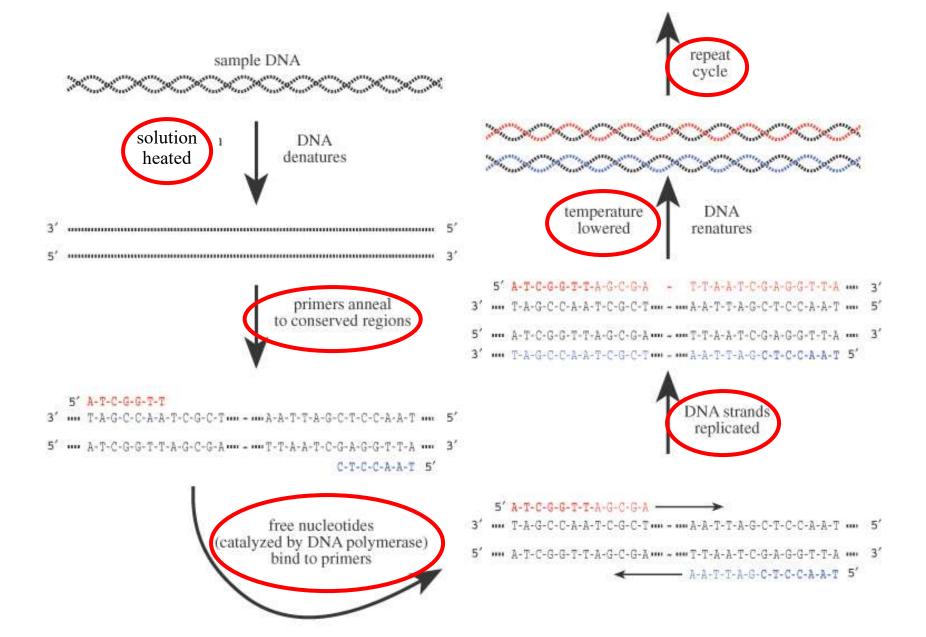
DNA analysis

What is DNA Sequence Data?

PCR: Polymerase Chain Reaction

What is it?

Process used to amplify DNA: replication into thousands of copies.

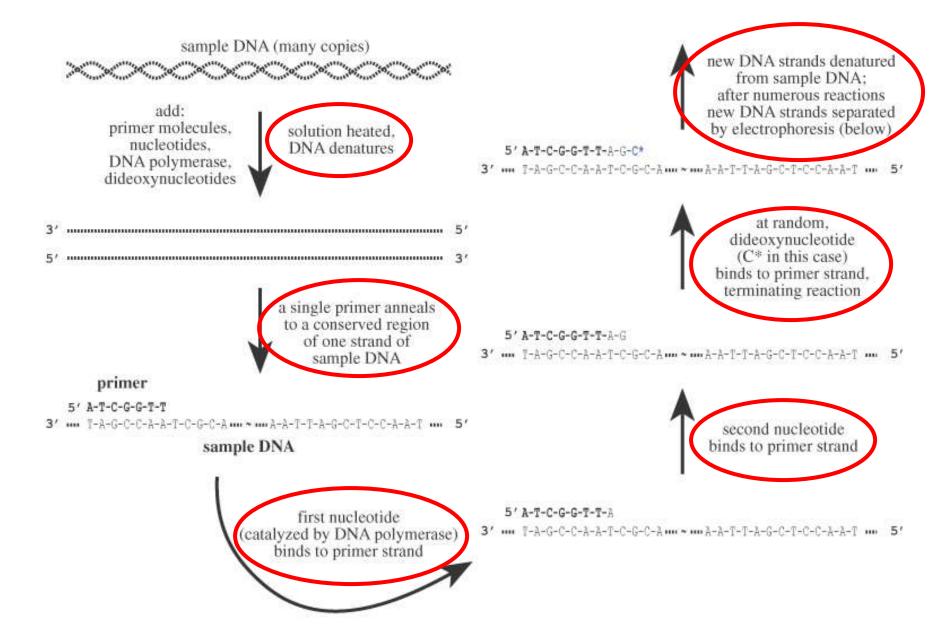

How does it work?

DNA isolated, purified, heated to denature

Primer used:

Primer = short, <u>conserved</u> DNA region Complementary to ends of DNA to be amplified

+ Taq polymerase, nucleotides, buffer/salts



PCR: Polymerase Chain Reaction

DNA Sequencing

How does it work?

- Similar to PCR amplification
- But, small amount of **Dideoxynucleotides** used (along with higher conc. of nucleotides)
- Dideoxynucleotides, once joined to new DNA strand, terminate polymerase reaction.
- Dideoxynucleotides identified by fluorescence pattern.
- Length of DNA strands determined by electrophoresis.

DNA Sequencing

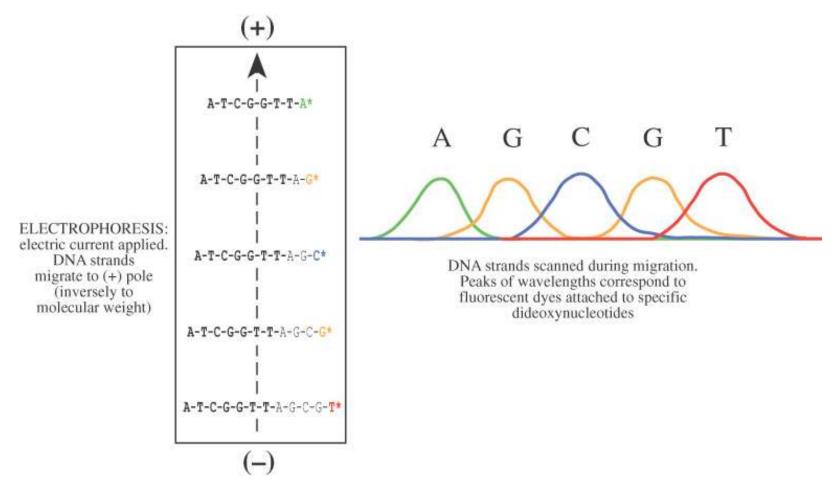
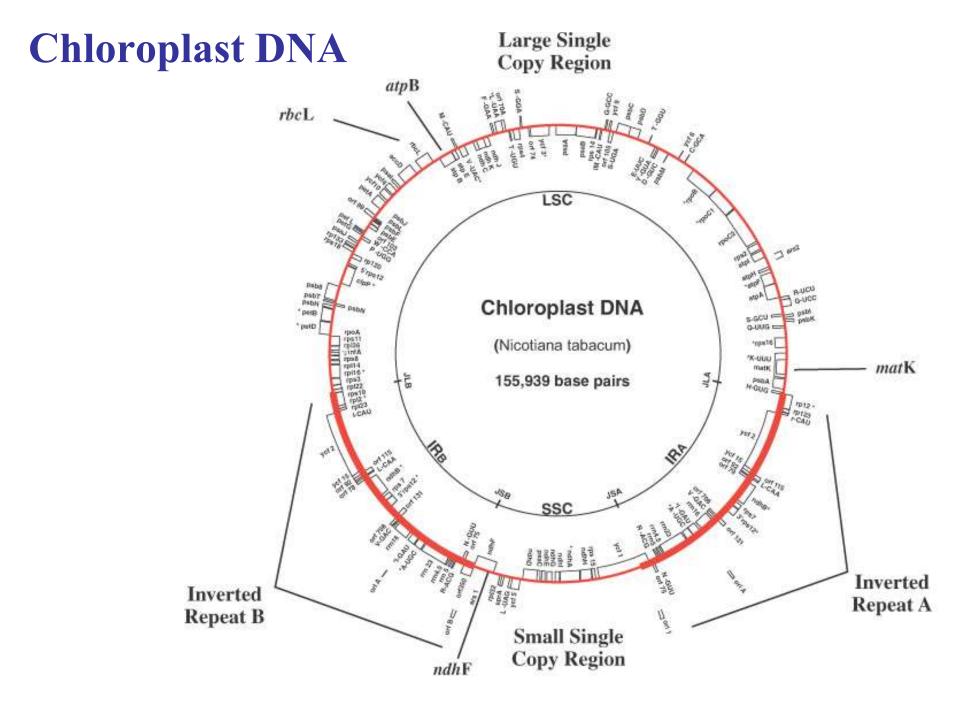


Figure 14.3 DNA sequencing reactions. A* = dideoxyadenine; C* = dideoxycytosine; G* = dideoxyguanine; T* = dideoxythymine.

Copyright 2006, Elsevier, Inc. All rights reserved.


DNA Sequencing

Types of DNA sequence data

Chloroplast cpDNA

Nuclear nDNA

Mitochondrial mtDNA (not used much with plants; used w/ animals)

Some Chloroplast coding genes:

Gene	Location	Function
atpB	Large single-copy region of chloroplast	Beta subunit of ATP synthethase, which functions in the synthesis of ATP via proton translocation
rbcL	Large single-copy region of chloroplast	Large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase (RUBISCO), which functions in the initial fixation of carbon dioxide in the dark reactions
matK	Large single-copy region of chloroplast	Maturase, which functions in splicing type II introns from RNA transcripts
ndhF	Small single-copy region of chloroplast	Subunit of chloroplast NADH dehydrogenase, which functions in converting NADH to NAD + H ⁺ , driving various reactions of respiration

CHLOROPLAST INERGENIC SPACER REGIONS					
3'rps16-5'trnK	petL-psbE	rpl32-trnL	trnL intron		
3'trnK-matK intron	psaI-accD	rpoB-trnC	trnL-trnF		
3'trnV-ndhC	psbA-3'trnK	rps16 intron	trnQ-5'rps16		
5'rpS12-rpL20	psbB-psbH	rps4-trnT	trnS-rps4		
atpI-atpH	psbD-trnT	trnC-ycf6	trnS-trnfM		
matK-5'trnK intron	psbJ-petA	trnD- $trnT$	trnS-trnG		
<i>ndhA</i> intron	psbM-trnD	<i>trnG</i> intron	trnT-trnL		
ndhF-rpl32	rpl14-rps8-infA-rpl36	trnH-psbA	ycf6-psbM		
ndhJ-trnF	rpl16 intron		90° 60° FB		

Chloroplast inter-genic spacer regions used!

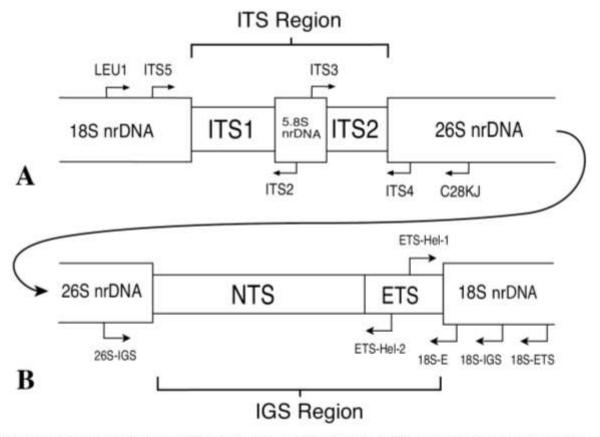


Figure 14.5 A. Internal transcribed spacers (ITSs) of nuclear ribosomal DNA, illustrating the ITS region and flanking subunits, and showing the orientations and locations of primer sites. After Baldwin et al. (1995). B. External transcribed spacer (ETS) of the intergenic spacer (IGS) region, also showing orientations and locations of primer sites. After Baldwin and Markos (1998).

Nuclear DNA: ITS/ETS Sequence Data: used in lower-level analyses

DNA alignment

		DNA Alignment			Character Coding				
		00000000000000000001111111111111111111	1	2	3	4	5	6	
Taxon	1	GCCTAGCCAAAGCTCTTCCAAGGTGACTCTCAGTTCAAGCT	2	0	3	2	0	4	
Taxon	2	GCCTAGCCAAAGCTCTTCCAAGCTGACTCTCAGCT	2	0	3	1	0	5	
Taxon	3	GCCTAGCCTAAGCTCAACCAAGGTGTCTCTCAGTTCAAGCT	2	3	0	2	3	4	
Taxon	4	GCCTAGCCTAAGCTCTTCCAAGGTGTCTCTCAGTTCAAGCT	2	3	3	2	3	4	
Taxon	5	GCCTAGCCAAAGCTCTTCCAAGCTGACTCTCAGCT	2	0	3	1	0	5	
Taxon	6	CCCTAGCCAAAGCTCTTCCAAGCTGACTCTCAGTTCAAGCT	1	0	3	1	0	4	
Taxon	7	CCCTAGCCAAAGCTCTTCCAAGCTGACTCTCAGTTCAAGCT	1	0	3	1	0	4	
Taxon	8	GCCTAGCCTAAGCTCTTCCAAGCTGACTCTCAGTTCAAGCT	2	3	3	1	0	4	

Figure 14.6 Example of alignment of DNA sequences of 41 nucleotide sites (positions 81–121) from eight taxa. Variable nucleotide sites are in **bold**. Note deletion of six bases in taxon 2 and taxon 5. Possible character coding of variable sites is seen at right. Coding of nucleotides is as follows: A = state 0; C = state 1; G = state 2; T = state 3. In this example, the deletion is coded as a single binary character (character 6), coded differently from nucleotides, as state 4 = deletion absent and state 5 = deletion present.

Character Coding

Weighting of DNA sequence data

	A	G	C	\mathbf{T}
A	0	1	5	5
G	1	0	5	5
С	5	5	0	1
Τ	5	5	1	0

Step Matrix:

Transition: PY <-> PY or PU <-> PU

Transversion: PY <-> PU or PU <-> PY

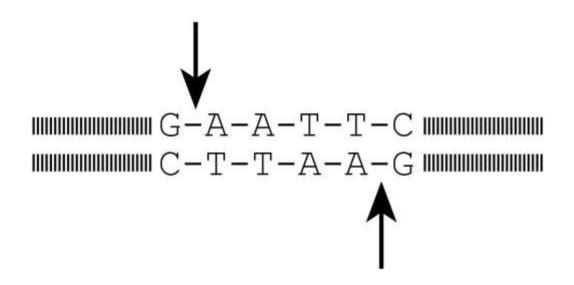
Models of Molecular Evolution

	A	c	G	T
A	$-\mu(a\pi_C + b\pi_G + c\pi_T)$	μ a π_{C}	$\mu b \pi_{G}$	$\mu c \pi_T$
C	$\mu a \pi_A$	$-\mu(a\pi_A + d\pi_G + e\pi_T)$	$\mu d\pi_G$	$\mu e \pi_T$
G	$\mu b \pi_A$	$\mu d\pi_{\mathbb{C}}$	$-\mu(b\pi_{\rm A}^{}+d\pi_{\rm C}^{}+f\pi_{\rm T}^{})$	$\mu f \pi_{\mathrm{T}}$
T	$\mu c \pi_A$	$μeπ_C$	μ f π_{G}	$-\mu(c\pi_A + d\pi_C + e\pi_G)$

	1	٩	i		
4	ľ	١	۱	ľ	
ı	7	1		۱	Ĺ

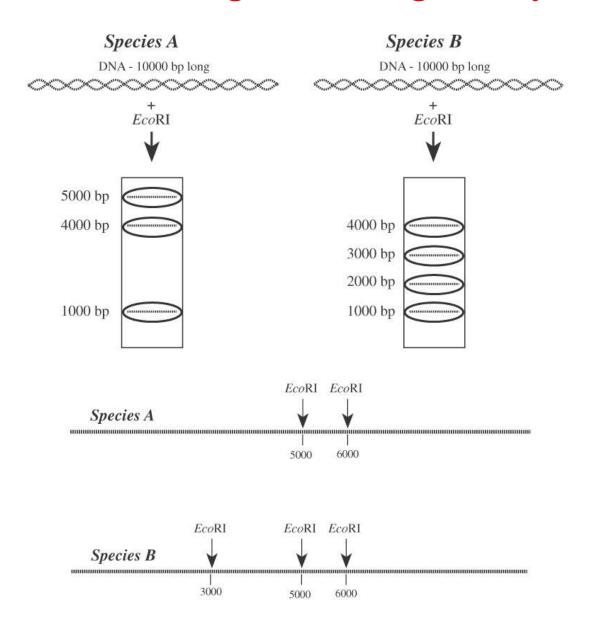
	A	C	G	T
A	-3/4µ	$1/4\mu$	$1/4\mu$	1/4μ
С	$1/4\mu$	-3/4µ	$1/4\mu$	$1/4\mu$
G	$1/4\mu$	$1/4\mu$	-3/4µ	$1/4\mu$
Т	$1/4\mu$	1/4µ	1/4µ	-3/4µ

B

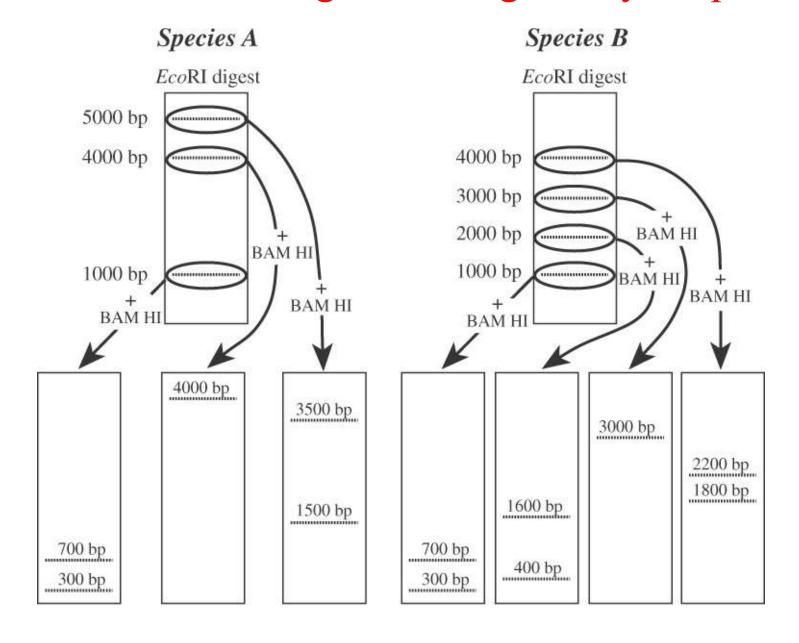

	A	C	G	T
A	-1/4µ(K+2)	$1/4\mu$	1/4μκ	$1/4\mu$
C	$1/4\mu$	-1/4μ(κ+2)	$1/4\mu$	1/4μκ
G	1/4μκ	1/4μ	-1/4μ(K+2)	1/4µ
T	$1/4\mu$	1/4µK	1/4µ	-1/4µ(K+2)

C

Figure 2.17 Models of base substitution. A. General time reversable model, in which probabilities of change from one base to another are a function of mean instantaneous base substitution rate (μ) , relative rate parameters (a,b,c,d,e,f), and base frequencies $(\pi_A,\pi_C,\pi_G,\pi_T)$.


B. Jukes-Cantor (JC) model, in which substitution rates are the same. C. Kimura's two-parameter model (K2P), in which base frequencies are the same but transitions (in red) and transversions (in blue) occur at different rates.

Restriction site?



Restriction Enzymes: E.g., EcoR1

RFLP: Restriction Fragment Length Polymorphism

RFLP: Restriction Fragment Length Polymorphism

RFLP: Restriction Fragment Length Polymorphism

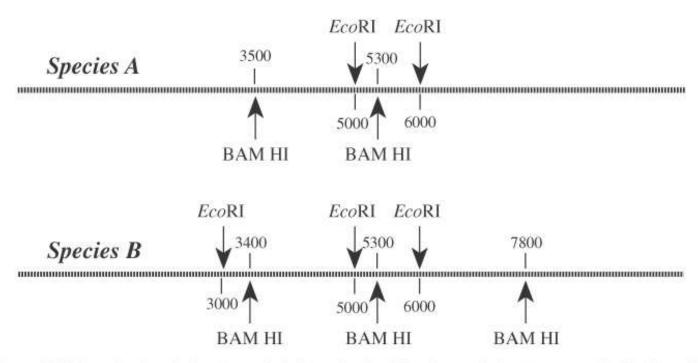


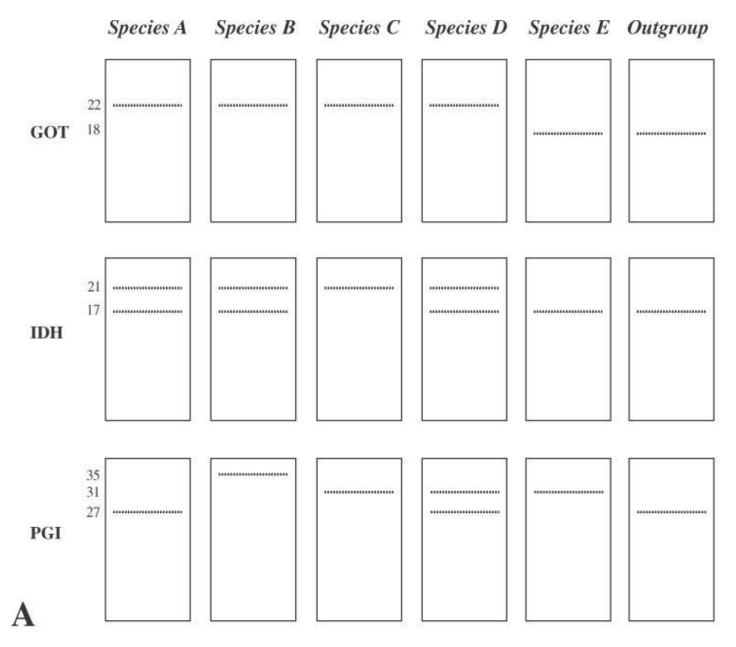
Figure 14.10 Example of restriction site analysis of species A and B, using restriction site enzyme EcoRI, followed by restriction site enzyme BAM HI. Possible restriction site maps of species A and B are shown in the lower portion of the figure.

Copyright 2006, Elsevier, Inc. All rights reserved.

CHARACTERS **EcoRI** BAM BAM BAM EcoRI BAM EcoRI TAXA 3500 7800 3000 3400 5000 5300 6000 Species A Species B + + + +

Figure 14.11 Character coding of restriction site map data of Figure 14.10, derived by presence or absence of EcoRI or BAM sites at specific locations along DNA.

Copyright 2006, Elsevier, Inc. All rights reserved.


Allozymes-different forms of an enzyme

Used in the past frequently, rarely today.

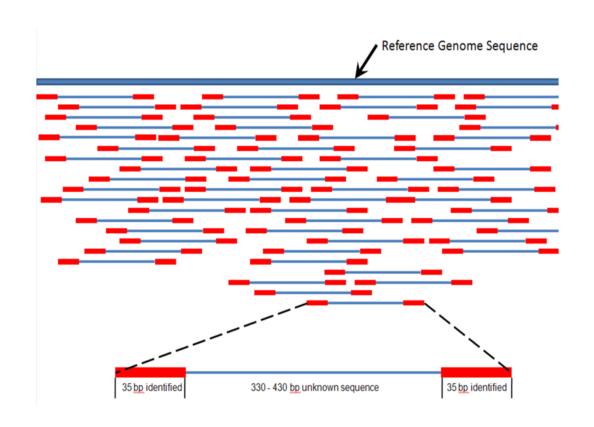
Gives presence/absence of enzyme types.

Can have 2 allozymes per sample (2 alleles of a gene=heterozygous).

More difficult to code for phylogenetic study.

Allozyme Data

THE FUTURE: Next Generation Sequencing


Also called High Throughput Sequencing

DNA is fragmented.

Fragments amplified producing as many as millions of sequences.

Many different techniques for amplifying and sequencing DNA fragments.

THE FUTURE: Next Generation Sequencing Sequences are then read and overlapping sequence data aligned, using a reference.

THE FUTURE: Next Generation Sequencing

ADVANTAGE: Can get much more DNA sequence data (on order of 100-1,000x more than traditional studies).

Cost is much lower (per bp).

Can also sequence **transcriptomes**: sequences of translated mRNA, i.e., what is expressed.

DISADVANTAGE: Requires massive computer capabilities to assemble data.

Usually must have a reference genome (closely related taxon).

STOP HERE

Species A

Species B

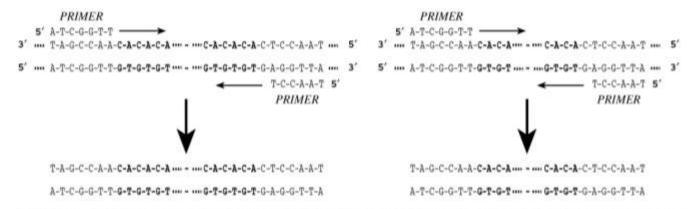


Figure 14.13 Microsatellite data. Primers were constructed to flank regions of tandem repeats. Note that tandem repeat region of species A is longer than that of species B and is thus a genetic difference between the two.

Microsatellites: Tandem repeats of nucleotides

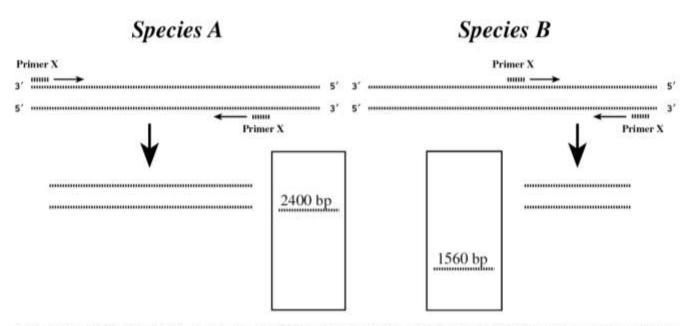


Figure 14.14 RAPDs data. In this example the same DNA regions for species A and B anneal to different randomly generated primers, resulting in amplified DNA of different lengths, a genetic difference between the two taxa.

RAPD's:

Random Amplified Polymorphic DNA

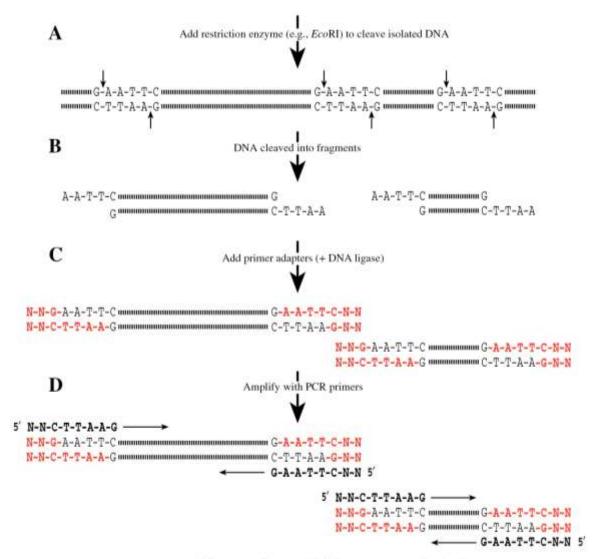


Figure 14.15 AFLP technique. The letters "N-N-" represent a length of nucleotides.

Amplified Fragment Length Polymorphism = AFLP's

THE FUTURE: Next Generation Sequencing

Also called High Throughput Sequencing

DNA is fragmented.

Fragments amplified producing as many as millions of sequences.

Sequences are then re Reference Genome Sequence sequence data align 330 - 430 bp unknown sequence