CYCAS

BY
Dr. T. Senthil kumar
Associate Professor
Department of Botany

CYCAS

Systematic Position

Gymnospermae

Division: CYCADOPHYTA

Class: CYCADOPSIDA

> Order: CYCADALES

> Family: CYCADACEAE

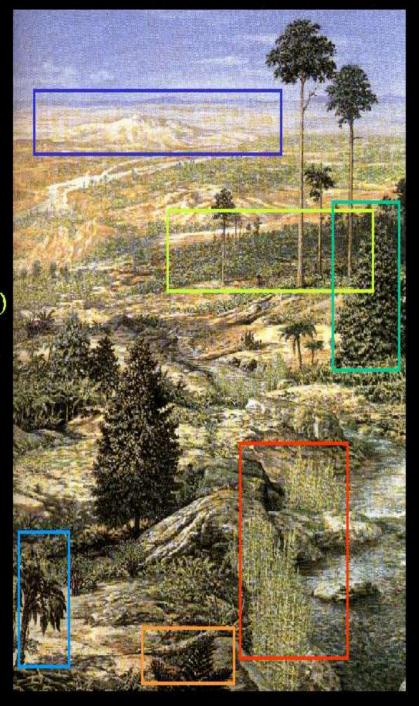
➤ Genus: CYCAS

(Greek word Kycas = Cocopalm)

Triassic

Scenery

Dry Areas


Conifer, Gingko and Fern Forest

Conifer

Horsetails

Ferns

Tree Ferns

Geographical distribution in time and space

- The cycads first appeared in the upper Triassic period and survived until the present day.
- The best preserved remains of the form genera
 - 1. Paleocycas whose female soprangiophores were described from upper Triassic rocks of Sweden and the leaves were described by the name Bjuvia simplex
 - 2. Leptocycas
 - 3. Lyssoxylon show close affinity with the present day cycads
- They originated in the upper Triassic and existed over a period of at least 250 million years and then gradually declined in number, being represented today only by 11 living genera.

Triassic Period

251 MYA - 199 MYA

Climate: Hot and dry, Seasonal hot summers/cold winters, no evidence of glaciations

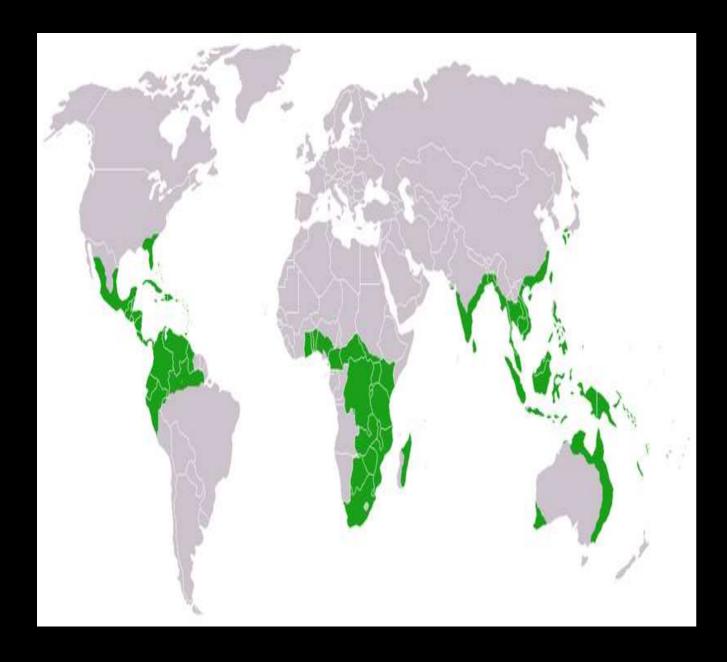
Flora: Full recovery of woody trees

Fauna: First dinosaurs, first flying vertebrates, first

mammals, new corals/reefs

Continental Masses:

Pangaea rifting
Period ended with
mass extinction severe in
oceans


Triassic The three distinct rock layers

Pangaea (SUPER CONTINENT)

The name is derived from Ancient Greek

pan ("all, entire, whole")

Gaia ("Mother Earth, land")

- Distribution & Occurrence
- Includes 20 Species
- Occurs wild or cultivated in tropical and sub-tropical regions
 - South of Eastern Hemisphere
 - e.g. S. Japan, India, China,
 - N. Australia, E. Coasts of Africa,
 - Myanmar, Bangladesh, Mauritius,
 - Nepal, etc.
- 6 species Indian 4 wild & 2 cultivated
 - C circinalis,
 - C. rumphii
 - C. pectinata
 - C. beddomei
 - C. revoluta & C. siamensis

PRESENT DAY DISTRIBUTION OF THE DIFFERENT GENERA OF CYCADALES IS LISTED BELOW

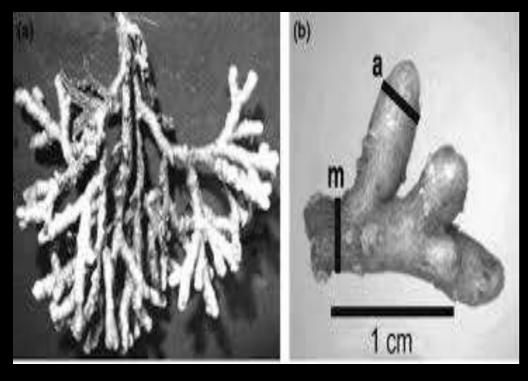
- 1. **Cycas(20 sps)**: India, Ceylon, java, phillipines, new guinea, fijii island, Australia, islands of madogaskar, mauritious, zanziber & cape comorin, south Vietnam, chna, japan, and areas bordering the gulf of Tonkin
- 2. **Zamia (30-40 sps)** : florida ,west indies ,mexico , northern part of south America and west coast of chile
- 3. Macrozamia (14 sps): endemic to Australia, particularly in the eastern, central and south western regions
- 4. Ceratozamia (4 sps): endemic to mexico, particularly in the southern mexico and Guatemala
- 5. Lepidozamia (2 sps): endemic to Australia
- 6. Dioon (3-5 sps): endemic to mexico and Honduras; also found in central America
- 7. Encephalortos (30 sps): In meridional africa; endemic to congo
- 8. Microcycas (1 sps) : restricted to cuba
- 9. Stangeria (1 sps): restricted to Zululand in south Africa
- 10. Bowenia (2 sps): endemic to Australia, particularly to the region of north eastern queens land

Sporophytic Plant Body

- Plants are low and palm-like, height 4-8 feet
- Tallest species, C. media upto 20 feet high
- Stem unbranched, columnar and covered with persistent leaf bases
- leaves dimorphic
- Female reproductive structures the megasporophylls are not aggregated in cones
- Ovules (2 or more) borne on the lower margins in ascending order

External Morphology

- Stem Cycas plant shows tuberous stem when young, becoming columnar and unbranched later
- Leaf Shoot apex is protected by a rosette of brown scale leaves
- Plant grows very slowly adding a new crown of leaves every 1 or 2 years, alternating with crown of scale leaves


External Morphology

- The pinnately compound megaphyllous leaves have 80-100 pairs of leaflets arranged on the rachis
- Circinnate axis of young leaves is a fern like character
- Leaf base is rhomboidal in shape and attaches the leaf transversely to the stem
- The leaflets are thick, leathery in texture, ovate or lanceolatein shape & photosynthetic in function.

- Root is of two types-normal and coralloid.
- Normal tap-roots grow from the radicle deep inside the soil giving out lateral branches
- Some of the lateral roots grow apogeotropically towards the surface of soil and branch dichotomously
- These roots are short, thick and swollen at the tips.
- Cluster of coralloid roots

- The much branched mass appears like a coral on the soil surface hence called coralloid roots
- Do not bear root caps
- The cluster has lenticel like apertures
- Become infested by N2 fixed blue-green algae (cyanobacteria); bacteria & diatoms e.g. Nostoc, Anabaena
- Symbiotic relationship thus established

SECONDARY XYLER XYLEM PROTOXYLEM Fig: internal structure of root

Anatomy

Roof

- Young root shows typical structure like that of a dicotyledonous root
- Outermost layer, epiblema, encloses the parenchymatous cortex interspersed with tannin cells and mucilage canals
- Endodermis with casparian thickenings
- Pericycle is multilayered with thin cells having starch grains
- Vascular tissue within is typically radial
- Roots usually diarch to tetraarch, rarely polyarch
- Vessels absent in vascular tissue
- Pith reduced or absent

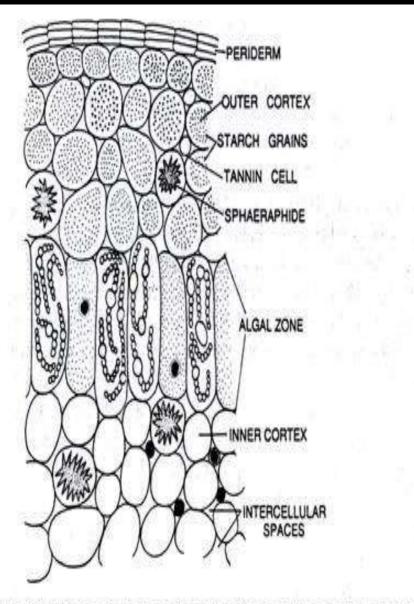


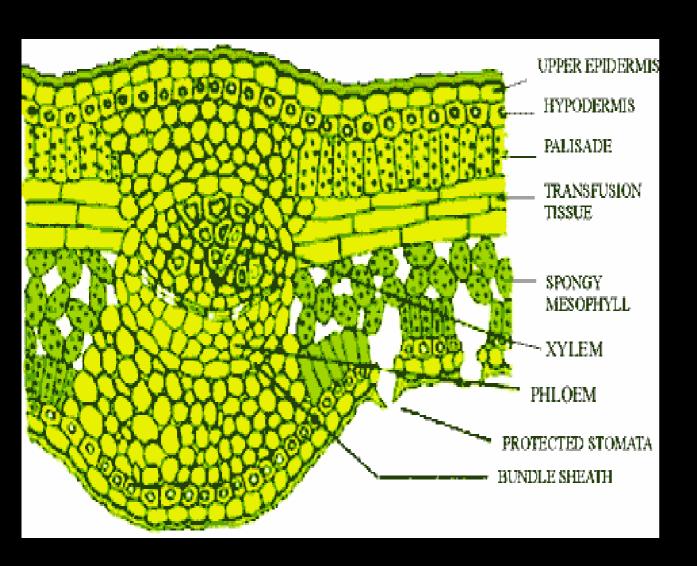
Fig. 3.13. Cycas revoluta. Transverse section of a part of coralloid root showing cortical region and algal zone.

Anatomy – Root

Coralloid Roots

Three zones:

- 1. Outer cortex
- 2. Middle cortex
- 3. Inner cortex


The outer layers formed by cork cambium.

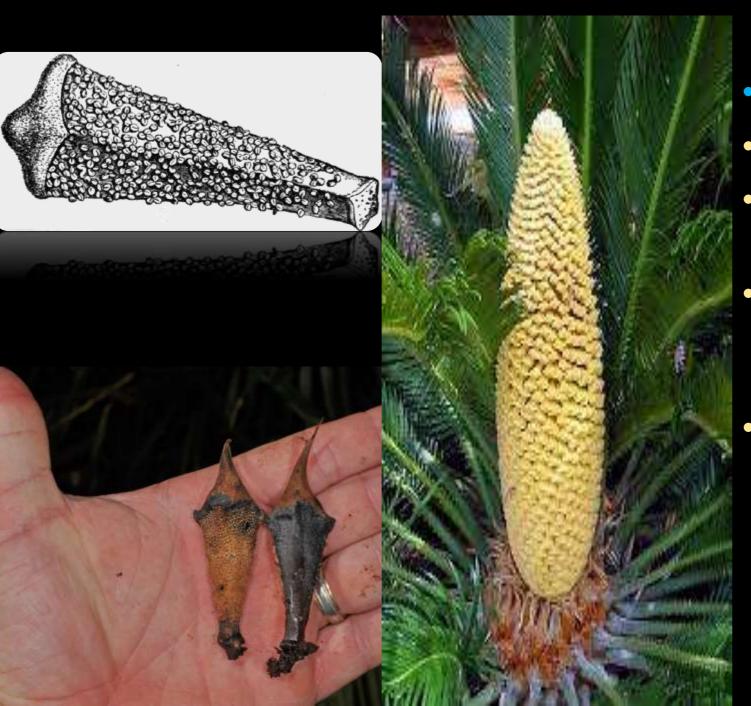
- Has additional algal zone in the middle cortex
- Cells of algal zone palisade like and form the middle cortex
- Stele diarch, triarch or tetrarch surrounded by pericycle.
- Schneider (1894) suggested that symbiotic association.

CYCAS-LEAFLET AND RACHIS Epidermis Hypodermis-Ground Mucilage Vascula bundle Combium-- Phloem Leoflets Spines Rochis LEAF T.S. OF RACHIS

Anatomy – Rachis

- Rachis of Cycas
- Woody and thick
- Hypodermis sclerenchymatous
- Characteristic feature is omega shaped (Ω) outline of the numerous vascular bundles
- Each bundle has sclerenchymatous bundle sheath and is open, collateral.
- Single layered endodermis
- One or multilayered pericycle surrounded by vascular bundle
- Xylem develops centrifugally
- Phloem lies towards the abaxial side
- Cambium is found in the upper surface of the xylem

Anatomy – Leaflet

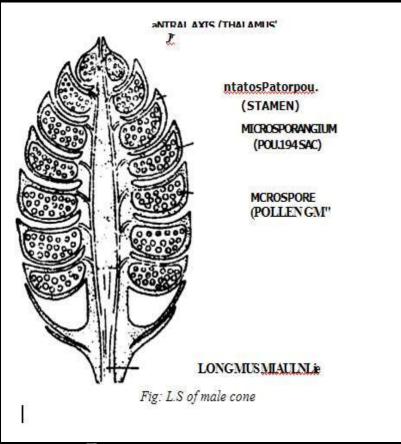

- Cycas Leaflet
- Leaflet is thickly cutinized and leathery
- Possesses all xerophytic characters
- Sunken stomata and thickened hypodermis present
- Well developed palisade layer in mesophyll
- Between the palisade and lower mesophyll layers, there are transversely running long colourless cells in 3-4 layers extending from mid-rib to near leaf margin
- These constitute the transfusion tissue
- Mid-rib bundle consists of a broad triangular centripetal xylem and two small patches of centrifugal xylem thus dipoxylic
- Phloem abaxially placed

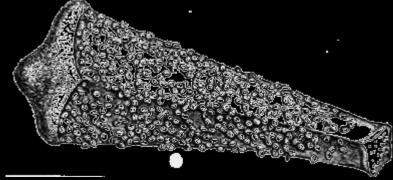
Reproduction – Vegetative

- Vegetative reproduction is by means of bulbils
- Develop in crevices of scale leaves and leaf bases at the basal part of an old stem
- Produces new plant on detachment

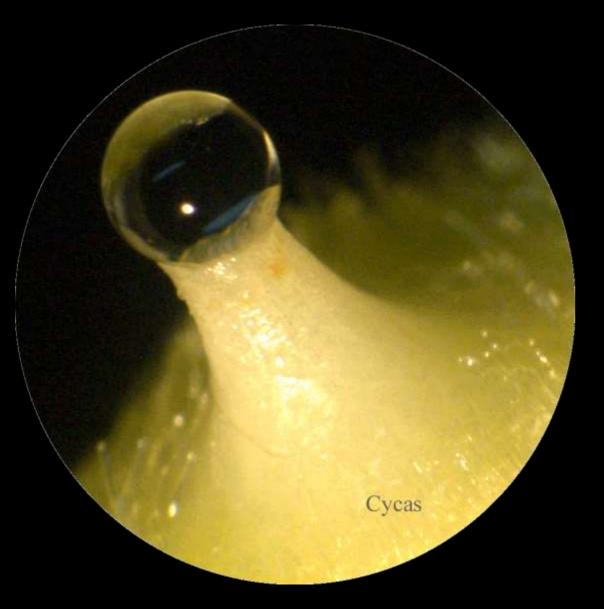
MALE CONE

- Strictly dioecious plant
- Male plants are rare
- Male strobilus or cone borne singly at the apex of the trunk
- Apical shoot apex utilized in the development of male cone, hence branching sympodial
- Cone shortly stalked & large (up to 50cm length or more)



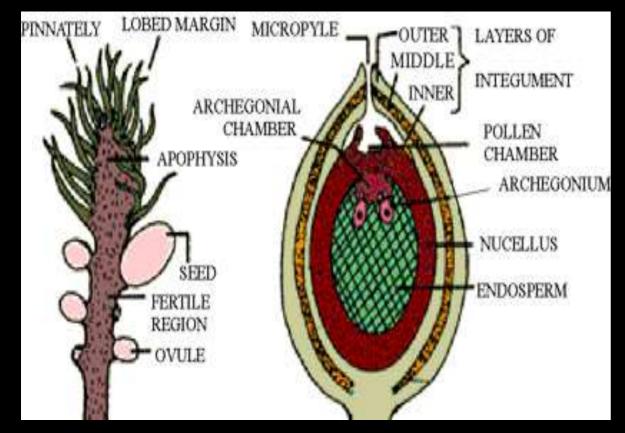


FEMALE CONE


- Female plant do not produce definite cones
- A whorl of spirally arranged megasporophylls arise around the short apex
- Each megasporophyll resembles the foliage leaf and approximately 10-23 cms. long
- Lower petiolar part bears the naked ovules on the margins

L.S OF MALE CONE

- Numerous micro-sporophylls spirally arranged around the central axis
- Each micro-sporophyll is narrow below and broad above terminating into projection – the apophysis
- Microsporangia confined to abaxial (lower) surface
- Upper surface is sterile
- Microsporangia develops from the hypodermal cells
- Usually present in sori each with 2-6 sporangia
- They contain a large number of haploid microspores (pollen grains)

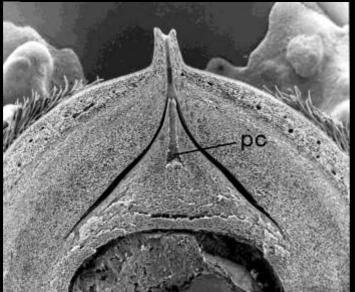

Pollination

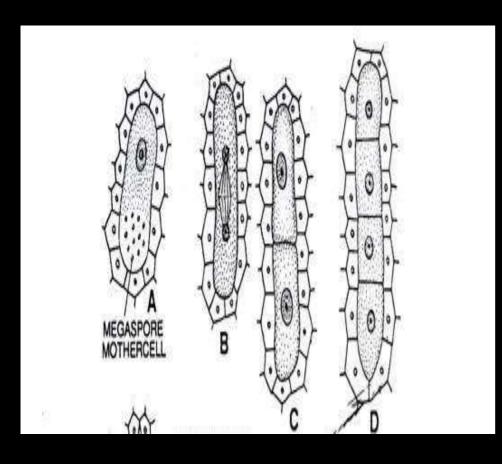
- The pollen grains are carried by wind (Anemophily) and caught by pollination drop secreted by ovule.
 Pollination is direct.
- The pollination drop is dehydrated and the pollen grains are sucked into the pollen chamber.
- Pollen grains take rest for some time in the pollen chamber.

tube cell antheridial cell prothallial pollen grain poller tube sperms body pollen stalk tube cell blepharoplast body cell prothallial cell Fig. 8.45 A-F, Cycas Development of male gametophyte.

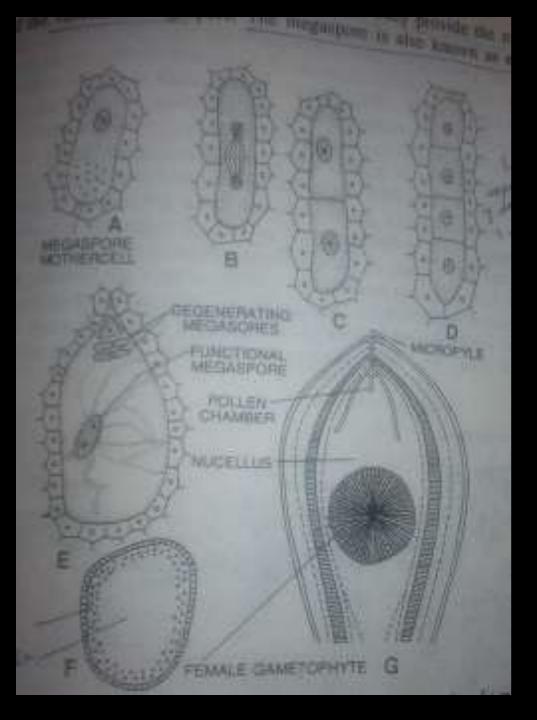
Pollination Development of male gametophyte after pollination

- During the germination of pollen grain the exine is ruptured and the inner intine comes out in the form a tube like structure known as pollen tube.
- At this time the generative cell divides and forms a larger, upper body cell and smaller, lower stalk cell.
- The pollen tube acts as haustorium to absorb food materials from the nucellus besides as sperm carrier.
- The body cell divides and forms two naked, top shaped, motile, multiciliatedantherozoids. The cilia are in 4 5 spirals.
- The male gametes of Cycas are $180-210~\mu$ in size and largest in the plant kingdom.
- The pollen tube apex is ruptured and the male gametes are released into the archegonial chamber.
- Presence of multiciliated male gametes is the fern character shown by Cycas male gametophyte



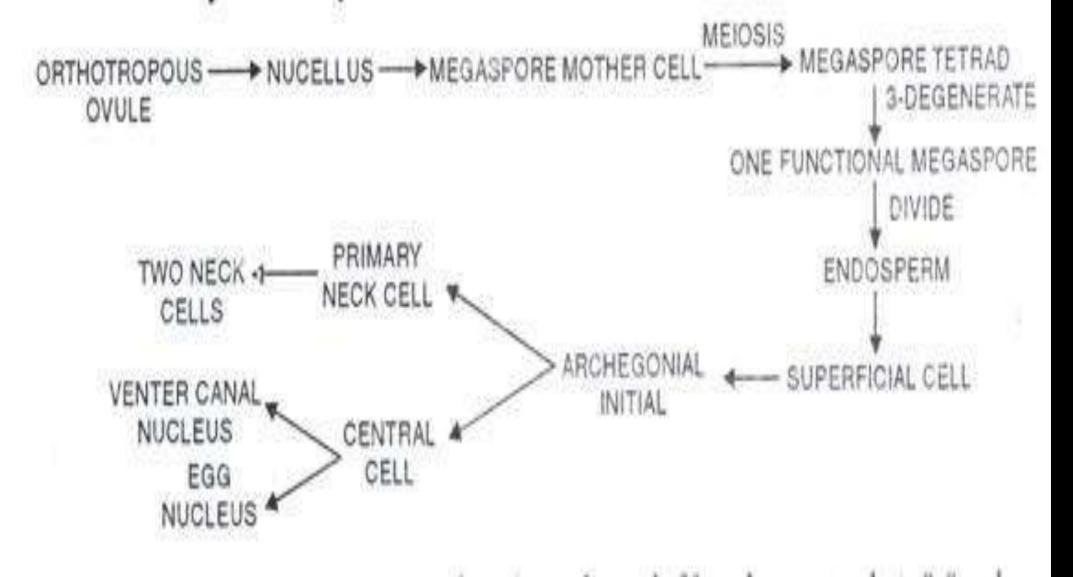

Ovule Structure

- Largest ovule (6cms.x4cms.) seen in C.circinalis
- Ovules are orthotropous, sessile, ovoid or spherical in shape and unitegmic.
- The thick integument is differentiated in three layersouter and inner fleshy layers, middle stony.
- The integument remains fused inside with nucellar tissue except at the position where it forms the micropylar opening.



- Nucellus is extended into the micropyle as a beak known as nucellar beak
- Cells of the nucellar beak degenerate and form pollen chamber
- The substance formed due to degeneration is secreted out through micropyle as a drop known as pollination or nectar drop
- Nectar drop helps in trapping the pollen grains carried through the agency of wind

MEGASPORES (formation)


- One of the cells of nucellus behaves as archesporial cell by showing enlargement.
- It may directly behave as megaspore mother cell or divides to form a parietal cell and megaspore mother cell
- Megaspore mother cell divides meiotically and forms 4 haploid megaspores in a linear tetrad
- The upper 3 micropylar megaspores degenerate and only the lower one is functional.
- The upper 3 megaspores are nutritional in function.
- The megaspore is also known as embryo sac.

Development of female gametophyte

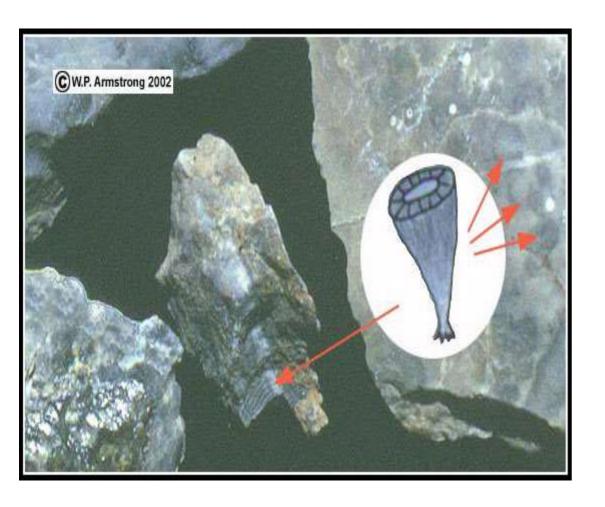
- Megaspore is the first cell of female gametophyte.
- Its nucleus undergoes many free nuclear divisions.
- Cell walls are formed in centripetal manner around the nuclei to form multicellular female gametophyte or female prothallus
- It utilises the nucellus for its development and
- nutritive in function for the development of embryo.
- Hence this haploid structure is also referred as endosperm
- Free nuclear division takes place until a 1000 free nuclei are formed within the megaspore.
- The space formed by the degeneration of nucellus cells between pollen chamber and female gametophyte is known as archegonial chamber.
- While megaspores increases in size, its germination starts.
- Surrounding nucellar tissue forms a layer
- Which is nutritive in function
- The archegonia begins to develop on the germinated megaspore.

Summary of development of Female Gametophyte

- Seed
- A mature embryo is straight and has a short hypocotyl.
- Embryonal axis has plumule at one end and radicle at the other.
- Radicle is covered by coleorhiza.
- Number of cotyledons maybe 2-3...
- Nucellusis completely absorbed in the seed.
- Mature seed is large 2.5–5 cm wide and usually orange or red in colour..
- Germination is hypogeal type.

FOSSIL CYCADS

- The cycadales 1st appeared in upper Triassic period.
- Distributed world wide and reached their maximum distribution in the Jurassic and cretaceous periods of Mesozoic era.
- Then declined in numbers, being represented today by 11 living genera. How ever, discovery of the megasporophyll of phasmatocycas kansna from the lower Permian indicate the existence of cycads in palaeozoic era.
- some representative forms of fossil cycads are listed below


Fossil cycads

Phasmatocycas:

mamay (1976)- lower pernian – mega sporophyll having bilaterally arranged basal ovules

Archeocycas:

mamay (1976)- lower pernian – mega sporophyll having undivided distal blade and 4-6 pairs of basal ovules

Palaeocycas:

- Florin (1933) upper Triassic –
- Reconstruction of the form genus considered of unbranched trunk reaching a height of about 3 meters.
- The leaves were described by the name bijuvia simplex having about 1 meter long and 20 cm broad simple leaves.
- The seed bearing organ was dscribed by the name palaeocycas integer having 30 cm long and 5 cm broad axis with cylindrical stalk bearing 4 seeds

Baenia:

- Harris (1961)
- Jurassic of Yorkshire
- Reconstruction now includes certain leaves by the the name nilssonia pseuductenis and nilssonia compacta.

Pseudoctenis:

- Harris Jurrassic –
- A form of leaves that was much more like that of modern cycads
- Unipinnate with parallel venation
- Stomata haplocheilic-wavy epidermal cells

PRIMITIVE CHARACTERS

- Stem is tuberous and partly or wholly subterranean leaf bases are caduceus
- Leaf rachis and the young leaflets show circinate vernation and the unrolling of successive leaflets proceeds from the base upward
- Leaves are large and bipinnate. leaflets are dorsiventral
- The cortex and pith are large and parenchymatous the pith is vascular bundles
- Presence of mesarch vascular bundle in the middle of rachis (cycas)

- Metaxylem trachieds possess scleriform thickening and simple pits in their radial walls
- Small scales or ramenta are present at the base of each microsporangium
- Male and female cones are large and heavy
- The micro and megasporophylls are foliaceous
- Large number of microsporangia are borne in definite soral clusters
- The microsporangia have well marked line of dehiscence
- The male gametes are large , ciliated , motile
- Fertilization is zoodiogamous (swim)

ADVANCED FEATURES

- Stem is columnar trunk like and arborescent (tree like)
- Leaf bases are persistant
- The leaves are pinnate (cycas). the leaflets are sessile with entire margin
- The primary vascular cylinder of stemis eustelic
- Presence of both endarch and exarch xylem in the midrib bundle of the pinnae as in the vascular strands in the leaf rachis
- Vascular bundles are arrange in the shape of inverted omega (?) in

- Presence of thick cuticle and hypodermis
- Stomata are present only on lower epidermis of the leaflets
- Secondary xylem tracheids posses multiseriate bordered pits on their radial walls
- Integumentary vascular traces are collateral
- Structure of archegonia is highly advanced type . there is complete absence of neck canal cells in the archegonia . the neck is short , only 4 celled
- Pollen grains germinate to produce pollen tube which carries the ciliated gametes to the vicinity of the archegonia

PHYLOGENY

- The group cycadales arose in palaeozoic era
- The time when pterido phytes , ptreridosperms and cordaitales were abundant .
- The possible ancestors of the present day cycadales
- Therefore, must be among these groups of plants.
- Among the 3 groups , pteridosperms resemble more closely with the cycadales and due to this fact it is quite possible that cycadales must have evolved from the extinct pteridosperms devevoryas 1956 scott 1909 and 1923; beck 1976; tylor 1969 , mamay 1969 ,

The Resemblances Of Cycadales With Pteridosperms Are

- Pinnate foliage leaves
- Circinate vernation
- Main trunk covered with the armour of leaf bases
- Large pith and broad cortex
- Presence of centripetal xylem in the foliar strands Presence of two vascular strands in the ovules
- The foliar megasporophylls of cycas arranged spirally on the trunk
 Motile and multiciliated spermatozoids

- Manoxylic secondary wood Presence of mucilage canals in the pith and cortex.
- Resemblances of cycadales with pteridophytes are not much significant.
- similarly, there is no proper link to correlate the origin of cycadales from cordaitales.
- however the resemblances with the bennettatales clearly indicates that the 2 groups have their separate phylogeny and have not sought their origin from each other it is therefore,
- concluded that cycadales must have originated from some palaeozoic pteridospermous group of plants

Economic and health benefits of Cycads

- Some cycads are poisonous as a result there are not many medical benefits
- These are also very close to extinction If prepared correctly they can be eaten
- The nuts contain a nerve toxin Consumption of the starch derived from cycads is a factor in the development of Lytico-Bodig disease,
- a disease symptoms similar to Parkinson's and ALS.
- But they look kind a pretty!!

References

A Textbook of Bryophytes, Pteridophytes, Gymnosperms and Paleobotany,
 A. V. S. S. Sambamurty

• Botany for Degree Students: Pandey B.P.

• Botany for Degree Students Gymnosperms, P.C. Vashishta and A. K. Sinha

http://www.biologydiscussion.com

http://www.easybiologyclass.com