MICROALGAE CULTURE

MICROALGAE COLLECTION

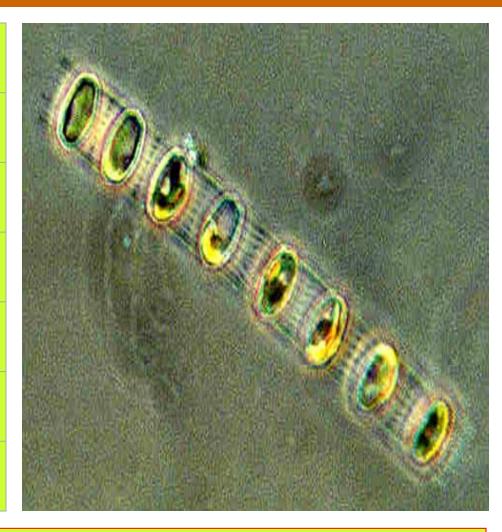

- Horizontal hauling
- Plankton mesh: 48 μm.
- Collection time: Early morning
- Transported to Laboratory for identification followed by isolation

Kingdom:	Plantae
Phylum:	Chlorophyta
Class:	Trebouxiophyceae
Order:	Chlorellales
Family:	Chlorellaceae
Genus:	Chlorella
Species:	C. marina

Unicellular, ellipsoidal to spherical in shape

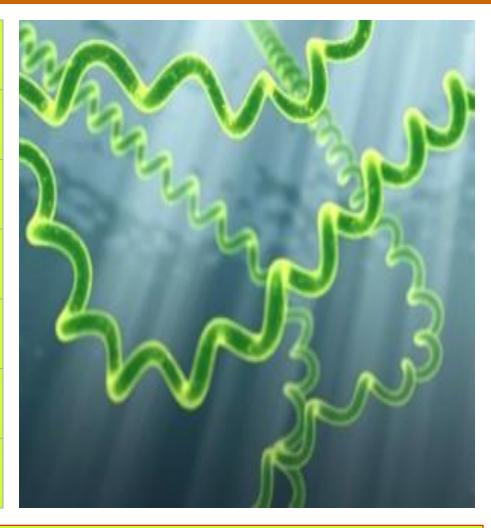
Kingdom: Chromista

Phylum: Bacillariophyta


Class: Mediophyceae

Order: Thalassiosirales

Family: Skeletonemaceae


Genus: Skeletonema

Species: S. costatum

Cells are cylindrical with rounded ends. Cells form long straight chains with help of spines

Kingdom:	Eubacteria
Phylum:	Cyanobacteria
Class:	Cyanophyceae
Order:	Spirulinales
Family:	Spirulinaceae
Genus:	Spirulina
Species:	S. platensis

Unicellular, tiny green filaments coiled in spirals of varying tightness and number

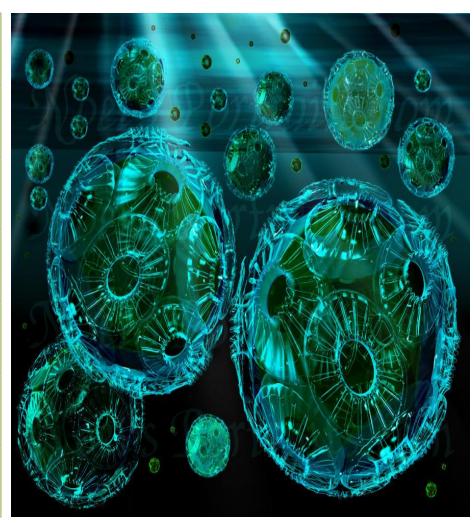
Kingdom: Chromista

Phylum: Miozoa

Class: Dinophyceae

Order: Dinophysiales

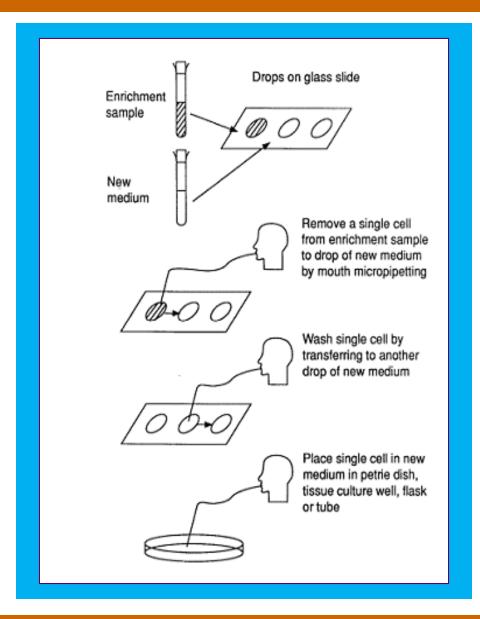
Family: Dinophysaceae


Genus: Dinophysis

Species: D. acuminata

Cells are oval or elliptical in shape. Armoured planktonic forms

Kingdom: Chromista Phylum: Haptophyta **Class:** Coccolithophyceae Order: Isochrysidales **Family:** Noelaerhabdaceae Genus: Emiliania **Species:** E. huxleyi


Peculiar armoured, appearance, possess calcium carbonate platelets

ISOLATION OF MICROALGAE

PIPETTE METHOD

Large microalgae will be pipetted out using a micro-pipette under microscope

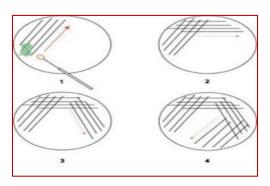
Isolated algae will be transfered to culture tubes having suitable culture media

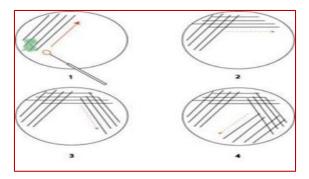
AGAR PLATING METHOD

1.5 gm of agar will be added to 1 litre of suitable culture medium

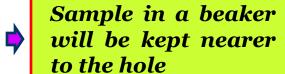
solution will be Agar sterilized in an autoclave for 15 min. under 60 kg pressure & 100°C temp.

Medium will be poured in sterilized 15 cm dia Petridishes & kept for 24 hours

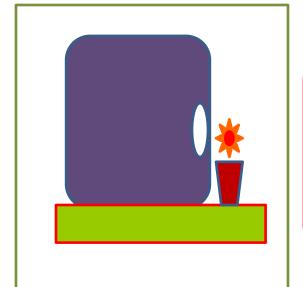

If required species grown into a colony will be removed by platinum loop under microscope transferred to culture tubes


Petri-dishes will be placed in an incubator for 7-8 days providing 1000 lux light & constant temperature of 25°C

Required species will be picked up by platinum needle under microscope and streaked on the surface of agar plate



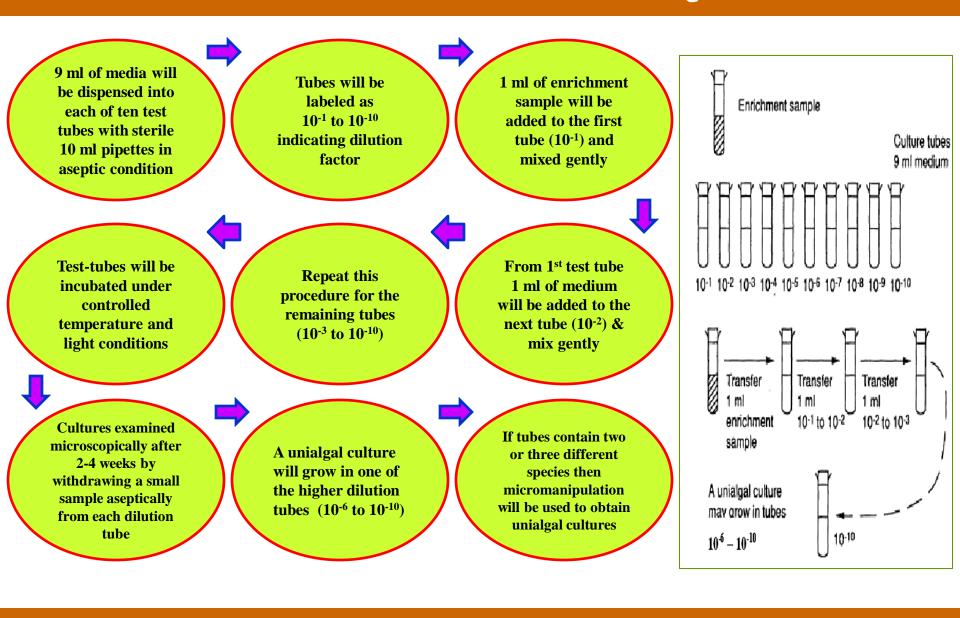
Further, microalgae will be sub-cultured in to small conical flasks and larger flasks and finally grown on a mass scale



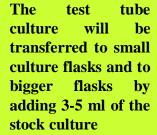
PHOTOTACTIC MOVEMENTS

Dark chamber with a small hole on one side will be made

A light will be provided near to the hole outside



Dinoflagellates will be separated using pipette and subcultured using tube as a pure culture


Since the flagellates have a tendency to move towards the light, it will crowded near to the candle light

SERIAL DILUTION TECHNIQUE

AFTER ISOLATION

After isolation of the required species, it will be subcultured in 50 ml test tubes.

Every two weeks a new set of 10 test tube for each species will be inoculated from the previous set

The filtration of water and medium enrichment should be done not earlier than 3 days, prior to inoculation

INDOOR ALGAL CULTURE

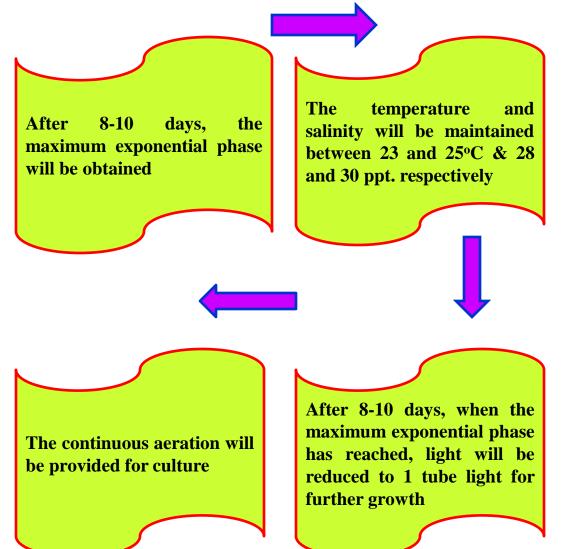
Indoor algal stock culture will be maintained in special air conditioning room

Stock cultures will be kept in 1 and 2 litres culture flasks, 5 and 15 litres plastic containers

Seawater filtered using 1 μ filter bag and sterilized by using autoclave. After cooling water will be transferred to the culture flask plugged with cotton or aluminum foil

INDOOR ALGAL CULTURE

All vessels used for algal culture will be sterilized properly and dried in an oven before use


About 10 ml of the inoculum in the growing phase will be transferred to the culture flasks and the culture will be placed in front of 2 tube lights (5000 lux)

The culture will be provided with 12:12 hrs. light and dark cycle

INDOOR ALGAL CULTURE

ALGAL CULTURE MEDIUMS

- Erd-Schreiber's & Miquel's medium.
- Conway's or Walne's medium.
- TMRL. Medium (Tung Kang Marine Res. Lab).
- Mixed culture medium.
- Guillard's Medium or F2 medium

ALGAL CULTURE MEDIUMS

COMPOSITION OF MEDIUM

Solution-A

Solution-B

Solution-C

SOLUTION-A

Potassium nitrate

- 100gm

Sodium orthophosphate

- 20gm

• EDTA(Na)

- 45gm

Boric acid

- 33.4gm

Ferric chloride

- 1.3gm

Manganese chloride

- 0.36gm

Distilled water

- 1 litre

SOLUTION-B

• Zinc chloride - 4.2gm

• Cobalt chloride - 4.0gm

• Copper sulphate - 4.0gm

• Ammonium molybdate -1.8gm

• Distilled water -1 litre

SOLUTION-C

Vitamin B1 (Thiamin) - 20mg

Vitamin B12 -10mg
(Cyanocobalamine)

Distilled water

- 100ml

Solution A, B and C (each) in different reagent bottles are prepared. 1ml of A, 0.5 ml of B and 0.1ml of C to 1 litre of filtered and sterilized seawater will be added

OUTDOOR MASS CULTURE

Large scale production of microalgae will be done in 100/1000 liters FRP tanks

Mass culture will be done using ammonium sulphate, super phosphate & urea in the ratio of 10:1:1

Continuous and vigorous aeration will be provided to the culture

For 100 litres of seawater 2 litres of inoculum will be added to the culture tank

