

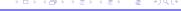
Measure Theory and Integration

V. Piramanantham

Department of Mathematics Bharathidasan University, Tiruchirapalli - 620 024

February 5, 2019

Department of Mathematics



ODE

Countable sub-additivity

Theorem

Prove that m* is countably sub-additive.

Proof.

Let $\{E_n\}$ be a countable collection of subsets of \mathbb{R} .

$$m^*(\bigcup_{n=1}^{\infty} E_n) \leq \sum_{n=1}^{\infty} m^*(E_n)$$
. Let $E = \bigcup_{n=1}^{\infty} E_n$.

Then

$$m^*(E) \leq \sum_{n=1}^{\infty} m^*(E_n).$$

Let $\epsilon > 0$ be given, for each $n, \exists (I_{nk})_{k=1}^{\infty}$ of the form [a, b) such that $E_n \subseteq \bigcup_{k=1}^{\infty} I_{nk}$.

and

$$\sum_{k=1}^{\infty} I(I_{nk}) \leq m^*(E_n) + \epsilon |2^n.$$

Now,

$$\bigcup_{k=1}^{\infty} (\bigcup_{k=1}^{\infty} I_{nk}) \supseteq \bigcup_{k=1}^{\infty} E_n = E.$$

$$\Rightarrow E \subseteq \bigcup_{n=1}^{\infty} I_{nk}.$$

By the definition of outer measure m^* ,

$$m^*(E) \leq \sum_{n,k=1}^{\infty} I(I_{nk})$$

$$= \sum_{n=1}^{\infty} (\sum_{k=1}^{\infty} I(I_{nk}))$$

$$= \sum_{n=1}^{\infty} [m^*(E_n) + \epsilon | 2^n]$$

$$= \sum_{n=1}^{\infty} m^*(E_n) + \sum_{n=1}^{\infty} \epsilon | 2^n$$

$$= \sum_{n=1}^{\infty} m^*(E_n) + \epsilon$$

Therefore

$$m^*(E) \leq \sum_{n=1}^{\infty} m^*(E_n) + \epsilon.$$

Since $\epsilon > 0$ is arbitrary, $m^*(E) \leq \sum_{n=1}^{\infty} m^*(E_n)$.

Theorem

Let $E \subseteq \mathbb{R}$. and ϵ be given. Then there exists an open set $U \in \mathbb{R}$ such that $E \subset U$ and $m^*(U) < m^*(E) + \epsilon$.

Proof.

By the definition of m^* , there exist $(I_k)_{k=1}^{\infty}$ such that $E \subseteq \bigcup_{k=1}^{\infty}$, and $\sum_{k=1}^{\infty} I(I_k) \leq m^*(E) + \epsilon.$

Let
$$I_k = [a_k, b_k)$$
. Then $I_k' = (a_k - \epsilon | 2^{k+1}, b_k)$

V. Piramanantham

Clearly $I_k \subseteq I'_k$ and

$$I(I'_{K}) = I(I_{k}) + \epsilon | 2^{k+1}.$$

$$m^{*}(\bigcup I'_{k}) \leq \sum_{k=1}^{\infty} I(I'_{k})$$

$$= \sum_{k=1}^{\infty} \{I(I_{k}) + \epsilon | 2^{k+1}\}$$

$$= \sum_{k=1}^{\infty} I(I_{k}) + \epsilon | 2.$$

Let
$$U=\bigcup_{k=1}^{\infty}I_{k}'$$
. Then $E\subseteq U=\bigcup_{k=1}^{\infty}I_{k}'$.

$$\Rightarrow m^*(U) \leq m^*(E) + \epsilon$$
.

Various Outer Measures

If
$$k \subset I$$
 and K is compact $\Rightarrow m^*(k) = I(I) - m(I|k)$. $E \subseteq \mathbb{R}, k \subseteq E$.
$$m_0(E) = \sup\{m(K)|K \subseteq E\}.$$

$$I_k = [a,b)$$

$$m^*(E) = \inf\{\sum_{k=1}^{\infty} I(I_k) \mid E \subseteq \bigcup I_k\}.$$

$$m_c^*(E) = \inf\{\sum_{k=1}^{\infty} I(I_k) \mid E \subseteq \bigcup I_k\}, \quad I_k = [a,b].$$

$$m_{oc}^*(E) = \inf\{\sum_{k=1}^{\infty} I(I_k) \mid E \subseteq \bigcup I_k\}, \quad I_k = (a,b].$$

$$m_o^*(E) = \inf\{\sum_{k=1}^{\infty} I(I_k) \mid E \subseteq I_k\}, \quad I_k = (a,b).$$

$$m_m^*(E) \leq m^*(E).$$

$$m^* = m_m^* = m_o^* = m_o^* = m_o^*.$$

ODE

Let $\epsilon > 0$, Claim

$$m_o^*(E) \leq m_m^*(E)$$
.

We prove

$$m_o^*(E) \leq m_m^*(E) + \epsilon$$
,

for all $\epsilon > 0$, $m_m^*(E) + \epsilon$ is not a l.b. there exist I_k such that $E \subseteq \bigcup I_k$ of any type with a_k, b_k as end points such that $E \subseteq \bigcup I_k$ and $\sum_{k=1}^{\infty} I(I_k) \le m^*(E) + \epsilon$.

For each k, define an open interval I'_k such that $I'_k \supseteq I_k$.

$$I(I'_k) = I(I_k) + \epsilon | 2^k$$

$$I'_k = (c_k, d_k)$$

$$E \subseteq \bigcup_{k=1}^{\infty} I'_k$$

$$m_o^*(E) \le \sum_{k=1}^{\infty} I(I'_k) = \sum_{k=1}^{\infty} \{I(I_k) + \epsilon | 2^k\}$$

$$= \sum_{k=1}^{\infty} I(I_k) + \epsilon$$

$$\le m_m^*(E) + 2\epsilon.$$

If $E \subseteq \mathbb{R}$ is a countable set $m^*(E) = 0$. $E = \{a_1, a_2, \cdots, \}$

$$0 \leq m^*(E) = m^*(\bigcup_{n=1}^{\infty} \{a_n\})$$
$$\leq \sum_{n=1}^{\infty} m^*(\{a_n\})$$
$$= \sum_{n=1}^{\infty} I(\{a_n\})$$
$$= 0.$$

Therefore

$$m^*(E) = 0.$$

