

Measure Theory and Integration

V. Piramanantham

Department of Mathematics Bharathidasan University, Tiruchirapalli - 620 024

February 5, 2019

Properties of Length Function

- (1) I(p) = 0.
- (2) I(x) = 0.
- (3) For any $x \in \mathbb{R}$, I(I+x) = I(x).
- (4) If $I = \bigcup_{k=1}^n I_k$, $I_k \in \mathcal{I}$ and $I \in \mathcal{I}$, $I(I) \leq \sum_{k=1}^n I(I_k)$.
- (5) If $I = \bigcup_{k=1}^n I_k$, $I_k \in \mathcal{I}$, $I_k \cap I_l = p$, $k \neq l$ and $I \in \mathcal{I}$, $I(I) = \sum_{k=1}^n I(I_k)$.
- (6) If $I, J \in \mathcal{I}$ such that $I \subseteq J$, $I(I) \leq I(J)$.

IF $E = I_1 \cup I_2 \cup \cdots \cup I_n$, $I_k \cap I_l = \emptyset$ with $k \neq I$. Then the measure of E is defined by

$$m(E) = I(I_1) + I(I_2) + \cdots + I(I_n).$$

 $\mathcal{A}=$ is the collection of subsets of E of \mathbb{R} such that E is a union of finitely many disjoint intervals.

$$\mathcal{A} = \{ E \subseteq \mathbb{R}/E = \bigcup_{k=1}^{n}, \quad I_k \in \mathcal{I}, \quad I_k \cap I_l = \emptyset, \quad k \neq l \}.$$

It is clear that $I \subseteq A$. and

$$m: \mathcal{A} \to \mathbb{R}^*$$

$$m(E) = \sum_{k=1}^{n} I(I_k).$$

Definition of Algebra and Measure

Definition

A collection \mathcal{A} of subsets of \mathbb{R} is called an algebra of sets in \mathbb{R} .

- (1) $\phi, \mathbb{R} \in \mathcal{A}$.
- (2) If $E, F \in \mathcal{A}$, $E|F \in \mathcal{A}$
- (3) If $E_1, E_2, \dots, E_n \in \mathcal{A}$, then $\bigcup_{k=1}^n E_k \in \mathcal{A}$.

Definition

A measure is a set function $m: \mathcal{A} \to \mathbb{R}$ such that $m(\emptyset) = 0$; $m(E) \ge 0$; and whenever E_1, E_2, \cdots, E_n are disjoint collection of set in \mathcal{A} then

$$m(\bigcup_{k=1}^{n} E_k) = \sum_{k=1}^{n} m(E_k).$$
 (1)

This property (1) is called subadditive.

For any E_k , E_l such that $E_k \cap E_l = \emptyset$, $k \neq l$.

$$m(\bigcup_{k=1}^{n} E_k) = \sum_{k=1}^{n} m(E_k).$$
 (2)

This property (2) is called additive.

Define the family

$$\mathcal{A}^* = \{ E \subseteq \mathbb{R} | E = \bigcup_{k=1}^n I_k, I_k \in \mathcal{I}.$$
 (3)

For any st $E \subseteq \mathbb{R}$, define the inner and outer measures

$$m^*(E) = \inf\{\sum_{k=1}^n I(I_k) \mid E \subseteq \bigcup_{k=1}^n I_k\},\tag{4}$$

$$m_*(E) = \sup\{\sum_{k=1}^n I(I_k) \mid \bigcup_{k=1}^n I_k \subseteq E\}. \tag{5}$$

If the inner measure $m_*(E) = m^*(E)$ then E is called Jordan measurable set in \mathbb{R} .

$$\mathcal{M} = \{ E \subseteq \mathbb{R} : E \text{ is Jordan measurable} \}.$$

$$m_*(E) = m(E) = m^*(E).$$

Definition

A set *E* is Jordan measurable iff for any $A \subseteq \mathbb{R}$

$$m^*(A) = m^*(A \cap E) + m^*(A \cap E^c).$$

ODE

countable sub- additive: If $I = \bigcup k = 1^{\infty} I_k$, $I_k \in \mathcal{I}$, $I \in \mathcal{I}$, then $I(I) \leq \sum_{n=1}^{\infty} I(I_k)$,

If $I = \bigcup_{n=1}^{\infty}$, $I_n \in \mathcal{I}$, $I_n \cap I_m = \emptyset$ with $n \neq m$ and $I \in \mathcal{I}$, then $I(I) = \sum_{n=1}^{\infty} I(I_n)$.

Definition

A set E is Jordan measurable iff for any $A \subseteq \mathbb{R}$

$$m^*(A) = m^*(A \cap E) + m^*(A \cap E^c).$$

ODF

Let $E \subseteq \mathbb{R}$. Define $m^*(E) = \inf\{\sum_{k=1}^{\infty} I(I_k) | E \subseteq \bigcup_{k=1}^{\infty} I_K\}$, then prove that m^* is called the lebesgue outer measure.

Theorem

- (i) $m^*(\emptyset) = 0$.
- (ii) $m^*(E) \geq 0$, for all $E \subseteq \mathbb{R}$.

ODE

(iii) $m^*(\{x\}) = 0$.

Proof

(i) Given
$$\epsilon > 0$$
, $I_1 = [0, \epsilon]$, $I_2 = I_3 = \cdots = \emptyset$.

$$m^*(\emptyset) \leq \sum_{n=1}^{\infty} I(I_n) \leq \epsilon.$$

$$\Rightarrow m^*(\emptyset) \le \epsilon$$
, for all $\epsilon > 0 \Rightarrow m^*(\emptyset) = 0$.

Proof

(ii) is trivial.

(iii) For any
$$\epsilon > 0$$
, $I_1 = [x, x + \epsilon)$, $I_2 = I_3 = \cdots = \emptyset$.

$$\{x\}\subseteq\bigcup_{k=1}^{\infty}I_k.$$

$$m^*(\lbrace x\rbrace) = \sum_{k=1}^{\infty} I(I_k) = \epsilon.$$

$$m^*(\lbrace x\rbrace) \leq \epsilon \Rightarrow m^*(\lbrace x\rbrace) = 0.$$