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Stability

We now introduce the concept of stability as it applies to the critical
points of the system(2.1).

It was pointed out in the previous section that one of the most
important questions in the study of a physical system is that of its
steady states. However, a steady state has little physical significance
unless it has a reasonable degree of permanence, i.e, unless it is
stable. As a simple example, consider the pendulum of fig (). There
are two steady states possible here: when the bob is at rest at the
highest point, and when the bob is at rest at the lowest point. The first
state is clearly unstable, and the second is stable. We now recall that
the steady state of a simple physical system corresponds to an
equilibrium point( or critical point) in the phase plane. These
considerations suggest in a general way taht a small disturbance at an
unstable equilibrium point leads to a larger and larger departure from
this point, while the opposite is true at a stable equilibrium point.



We now formulate these intuitive ideas in a more precise way.
Consider an isolated critical point of the system (2.1), and assume for
the sake of convenience that this point is located at the origin

O = (0,0) of the phase plane. This critical pont is said to be stable if
for each positive number R there exists a positive number r < R such
that every path which is inside the circle x? + y? = r? for some t = t
remains inside the circle x? + y? = R? for all t > ty (fig()). Lossely
speaking, a critical point is stable if all paths that get suffienciently
close to the point stay close to the point. Further , our critical point is
said to be asymptotically stable if it is stable and there exists a circle
X2+ y? = r§ such that every path which is inside this circle for some
t = tp approaches the origin as t — oo. Finally, if our critical point is not
stable, then it is called unstable.



Critical points and Stability for Linear system

We consider the system

{%:a1x+b1y )

% = aXx + boy,

which has the origin (0, 0) as an obivous critical point . We assume
throughtout this section that

a4 b1

a bo

so that (0, 0) is the only critical point.

#0, (2)




It was proved that (3.1) has anontrival solution of the form
x = Ae™
y = Be™

whenever m is a root of the quadratic equation

m? — (81 + b2)m + (31 by — 82b1) =0, (3)

which is called the auxilliary equation of the system. Observe that
condition (3.2) implies that zero cannot be a root of (3.3).




Let my and my be the root of (.3.). We shall prove that the nature of the
critical point (0, 0) of the system(3.1) is determined by the nature of the
number my and m.. It is reasonable to expect that three possiblities wil
occur, according as my and ms are real and distinct, real and equal, or
conjugate complex. Unfortunately the situation is a little more
complicated than this, and it is necessary to consider five cases,
subdivided as follows.




Major cases:

(i) The roots my and my are real, distinct, and of the same sign
(node).

(i) The roots my and m» are real, distinct, and of opposite sign
(saddle point).

(iii) The roots my and m», are conjugate complex but not pure
imaginary (sprial).

(iv) The roots my and my are real and equal (node).

(v) The roots my and my are pure imaginary (center).




The reason for the distinction between the major cases and the
borderline cases will become clear . For the present it suffices to
remark that while the borderline cases are of mathematical interest
they have little significance for applications, because the
circumstances defining them are unlikely to arise in physical problems.
We now turn to the proofs of the assertions in parentheses.




If the roots my and m» are real, distinct, and of the same sign, then the
critical point (0, 0) is a node.
We begin by assuming that my and m» are both negative , and we
choose the notation so that m; < m» < 0. By the general solution in
this case is . o
= 1 2
{x c1A1e™ + coAze (@)

t t
y = ¢1B; e™ + coBoe™,

where the A's and B's are definite constants such that Bj|A; # Bz|Ao,
and where the ¢’s are arbitrary constants.



When ¢, = 0, we obtain the solutions

t
X = c1A1e’"1

t
y= C1B1em1,..

and when ¢y = 0, we obtain the solutions

t
{X = 02A26m2

t
y = cngemz.




For any ¢y > 0, the solution (3.5) represent a path consisting of half of
the line A1y = By x with slope B;|Ay; and for any ¢; < 0, it represents a
path consisting of the other half of this line. Since my < 0, both of
these half-line paths approach (0,0) as t — oo; and since y|x = By|Aq,
both enter (0, 0) with slope By|A; fig(). In exactly the same way, the
solutions (3.6) represent two half-line paths lying on the line

A2y = Box with slope B,|A,. These two paths also approach (0, 0) as
t — oo, and enter it with slope Bs|As.




If ¢y # 0 and ¢ # 0, the general solution (3.4) represents curved
paths. Since my < 0 and my < 0, these paths also approach (0,0) as
t — oo. Futhermore, since my — m> < 0 and

Y B; em + Cngemé (¢1B;s ’Cz)e(fm—mz)t + By

X ciAe™ + coAre™  (CrAj|co)elm—ma)t + Ay’

it is clear that y|x — Bs|Az as t — oo, so all these paths enter (0, 0)
with slope B;|A,. Figure () presents a qualitative picture of the
situation. It is evident that our critical point is a node, and that it is
asymptotically stable.




If my and m» are both positive, and if we choose the notation so that
my > me > 0, then the situtation is exactly the same except that all the
paths now approach and enter (0,0) as t — —oco. The picture of the
paths given in fig() is unchanged except that the arrows showing their
directions are all reversed . We still have a node, but now it is unstable.




