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Critical Points

Consider an autonomous system

& = F(x,y)
dt 1
{% = G(x,y). ")

Let (X0, ¥o) be an isolated critical point of (2.1). If C = [x(t), y(t)] is a
path of (2.1), then we say that C approaches (xg, yp) as t — oo if

lim x(t) = xo and lim y(t) = yo. (2)
t—oo t—o0




Geometrically, this means that if P = (x, y) is a point that traces out C
in accordance with the equations x = x(t) and y = y(t), then
P — (X0, ¥0) as t — oo. nlf it is also true that

- y(t)—¥o
tlggo x(t) — xo

(3)

exists, or if the quotient in (2.3) becomes either positively or negatively
infinite as t — oo, then we say that C enters the critical point (xo, o) as
t — oo.




A critical point like that in fig () is called a node. Such a point is
approached and also entered by each pathas t — oo (oras t — —o0).
For the node shown in fig (), there are four half- line paths,

AO, BO, CO, and DO, which together with the origin make up the lines
AB nd CD. all other paths resemble parts of parabolas, and as each of
these paths approaches O its slope approaches that of the line AB.

Consider the system




Critical Points

It is clear that the origin is the only critical point, and the general
solution can be found quite easily by the methods

{x: cre 5)

y = crel + ce?l.

When ¢; = 0, we have x = 0 and y = c,€?!. In this cases the path is
the positive y— axis when ¢, > 0, and the negative y— axis when ¢», 0,
and each path approaches and enters the origin as t — —oc.




Critical Points

When ¢, = 0, we have x = ¢ye! and y = ¢y e'. This path is the half-line
y = x,x > 0, when ¢;.0, and the half-line y = x, x < 0, when ¢; < 0,
and again both paths approach and enter the origin as t —+ —oo. When
both ¢y and ¢, are # 0, the paths lie on the parabolas

¥ = x + (c2|c2)x?, which go through the origin with slope 1. It should
be understood that each of these paths consists of only part of a
parabola, the paths with x.0 if ¢; > 0, and the part with x < 0if ¢y < 0.
Each of these path also approaches and enters the origin as t — —oc;
this can be seen at once from (2.5).




If we proceed directly from (2.4) to the differential equation

dy —x+2y
dx X

(6)

giving the slope of the tangent to the path through (x, y) [ provided
(x,y) # (0,0)] then on solving (2.6) as a homogeneous equation, we
find that y = x + cx2. This procedure yeilds the curves on which the
paths lie(except those on the y— axis), but gives no information about
the manner in which the paths are traced out. It is clear from this
discussion that the critical point (0, 0) of the system (2.4) is a node.




Saddle points

: A critical point like that in fig () is called a saddle point. It is
approached and entered by two half-line paths AO and B) as t — —o0,
and these two paths lie on a line AB. It is also approached and entered
by two half-line paths CO and DO as t — —oo, and these two paths lie
on another line CD. Between the four half-line paths there are four
region, and each contains a family of paths resembling hyperbolas.
These paths do not approach O as t — oo or as t — —oo, but instead
are asymptotic to one or another of the half-line paths as t — oo and
ast— —oo.




A center (sometimes called a vortex) is a critical point that is
surrounded by a family of closed paths. It is not approached by any
pathast — cc or t — —oc.

The system
&=
{d_; . (7)

has the origin as its only critical point, and its general solution is

X = —Cysint+ Crcost (8)
Y =cjcost+ Cosint.




The solution satisfying the conditions x(0) = 1 and y(0) = 0 is clearly

X =sint =cos(t— %
-2 ©
y = —cost=sin(t - %).

These two different solutions define the same path C (fig()), which is
evidently the circle x® 4+ y? = 1. Both (2.8) and (2.9) show that this
path is traced out in the counterclockwise direction. If we eliminate ¢
between the equations of the system, we get

@ _ X

dx y’
Whose general solution x? 4 y? = ¢2 yeilds all the paths (but without
their directions). It is obvious that the critical point (0, 0) of the
system(2.7) is a center.



A critical point like that in fig() is called a sprial(or sometimes a focus).
Such a point is approached in a sprial-like manner by a family of paths
that wind around it an infinite number of times as f — oo (or as

t — —oo). Note particularly that while the paths approach O, they do
not enter it. That is, a point P moving along such a path approaches O
ast — oo (oras t — —oo), but the line OP does not approach any
definite direction.

If ais an arbitrary constant, then the system

X —ax—y
£ (10)
¥ =x+ay

has the origin as its only critical point (why?).




The differential equation of the paths,

dy  x+ay
dx ax-—y

(11)

is most easily solved by introducing polar coordinates r and 6 defined
by x = rcosf and y = rsin6. Since

rP=x?4+y?and 6 =tan"" %
we see that
ar ady odf  dy
ra_x-l—ya and ra_xa—y



With the aid of these equations (2.11) can be written in the very simple
form

ar
% = ar.
So
r = ce® (12)

is the polar equation of the paths. The two possible sprial
configurations are shown in fig() and the direction in which these paths
are traversed can be seen from the fact that & = —y when x = 0. If

a =0, then (2.10) collapses to (2.7) and (2.12) becomes r = ¢, which
is the polar equation of the family x? + y? = ¢2 of all circles centered
on the origin. This example therefore generalizes Example 2; and
since the center shown in fig() stands on the borderline between the
sprials of fig(), a critical point that ias a center is often called a
borderline case.



