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Power Series Solutions

Theorem
Let xn be an ordinary point of the differential equation

y
′′
+ P(x)y

′
+ Q(x)y = 0. (1)

and let a0 and a1 be arbitrary constants. Then there exists a unique
function y(x) that is analytic at xn, is a solution of equation (1.1) in a
certain neighborhood of this point, and satisfies the initial conditions
y(x0) = a0 and y(x0) = a1. Furthermore, if the power series
expansions of P(x) and Q(x) are valid on a interval
|x − x0| < R,R > 0, then the power series expansion of this solution is
also valid on the same interval.
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Proof

For the sake of convenience, we restrict our argument to the case in
which x0. This permits us to work with power series in x rather than
x − x0, and involves no real loss of generality. With this slight
simplifaction, the hypothresis of the theorem is that P(x) and Q(x) are
analytic at the origin and therefore have power series expansions

P(x) =
∞∑

n=0

pnxn = p0 + p1x + p2x2 + · · · (2)

and

Q(x) =
∞∑

n=0

qnxn = q0 + q1x + q2x2 + · · · (3)
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Proof

that converge on an interval |x | < R for some R > 0. Keeping in mind
the specified initial conditions, we try to find a solution for (1.1) in the
form of a power series

y =
∞∑

n=0

anxn = a0 + a1x + a2x2 + · · · (4)

with radius of convergence at least R. Differentiao of (1.4) yeilds

y
′
=
∞∑

n=0

(n + 1)an+1xn = a1 + 2a2x + 3a3x2 + · · · (5)
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Proof

and

y
′′
=
∞∑

n=0

(n + 1)(n + 2)an+2xn

= 2a2 + 2.3a3x + 3.4a4x2 + · · · (6)

It now follows from the rule for multiplying power series that
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Proof

P(x)y
′
= (

∞∑
n=0

pnxn)[
∞∑

n=0

(n + 1)an+1xn]

=
∞∑

n=0

[
∞∑

n=0

pn−k (k + 1)ak+1]xn (7)

Q(x)y = (
∞∑

n=0

qnxn)(
∞∑

n=0

anxn)

=
∞∑

n=0

(
∞∑

n=0

qn−kak )xn. (8)
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Proof

On substituing (1.6), (1.7) and (1.8) into (1.1) and adding the series
term by term, we obtain

∞∑
n=0

[(n + 1)(n + 2)an+2 +
n∑

k=0

pn−k (k + 1)ak+1 +
n∑

k=0

qn−kak ]xn = 0,

So we have the following recursion formula for the an:

(n + 1)(n + 2)an+2 = −
n∑

k=1

[(k + 1)pn−kak+1 + qn−kak ]. (9)
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Proof

For n = 0,1,2, · · · this formula becomes

2a2 = −(p0a1 + q0a0),

2.3a3 = −(p1a1 + 2p0a2 + q1a0 + q0a1),

3.4a4 = −(p2a1 + 2p1a2 + 3p0a3 + q2a0 + q1a1 + q0a2).

These formulas determine a2,a3, · · · in terms of a0 and a1, so the
resulting series (1.4), which formally satisfies (1.1) and the given initial
conditions, is uniquely by these requirements.
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