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Vector Fields on surfaces; orientation

Definition

A vector field ~X on an surface S ⊂ Rn+1 is a function which aassigns
to each point p in S a vector ~X (p) ∈ Rn+1

p at p.

Definition

If ~X (p) is tangent to S (ie, ~X (p) ∈ Sp) for each p ∈ S, ~X is said to be a
tangent vector feilds on S.

Definition

If ~X (p) is orthogonal to S (ie ~X (p) ∈ S⊥p for each p ∈ S, ~X is said to be
a normal vector feild on S.
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Definition

A function g : S → Rk , where S is an n- surface in Rn+1, is smooth if it
is the restriction to S of a smooth function g̃ : V → Rk defined on some
open set V in Rn+1 containing S.
Similarly, a vector field ~X on S is smooth, if it is the restriction to S of a
smooth vector field defined on some open set containing S.

Remark

Thus ~X is smooth if and only if X : S → Rn+1 is smooth, where
~X (p) = (p,X (p)) for all p ∈ S.
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Theorem

Let S be an n- surface in Rn+1, let ~X be a smooth tangent vector field
on S, and let p ∈ S. Then there exists an open interval I containing O
and a parametrized curve α : I → S such that

(i) α(0) = p,

(ii) α(t) = ~X (α(t)) for all t ∈ S
(iii) If β : Ĩ → S is any other parametrized curve in S satisfying (i) and

(ii), then Ĩ ⊂ I and β(t) = α(t) for all t ∈ Ĩ.

Proof.

Since ~X is smooth,there exists an open set V containing S and a
smooth vector field ~X on V such that X̃ (q) = ~X (q) for all q ∈ S. Let
f : U → R and c ∈ R be such that S = f−1(c) and f (q) 6= 0 for all
q ∈ S.
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Proof.

Let W = {q ∈ U ∩ V |f (q) 6= 0}. Then W is a open set containing S,
and both X̃ and f are defined on W , everywhere tangent to the level
sets of f , defined by

~Y (q) = X̃ (q)− (X̃ (q).∇f (q))
‖∇f (q)‖2

∇f (q).

Note that Y (q) = X (q) for all q ∈ S. Let α : I →W be the maximal
integral curve of Y through p. Then α actually maps I into S because

(f ◦ α)′(t) = ∇f (α(t)).α(t)
= ∇f (α(t)).Y (α(t)) = 0.
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Proof.

and f ◦ α(0) = f (p) = c, so f ◦ α(t) = c, for all t ∈ I conditions (i) and
(ii) are clearly satisfied and condition(iii) is satisfied because any
β : Ĩ → S satisfying (i) and (ii) is also an integred curve of the vector
field ~Y on W so the theorem

Corollary

Let S = f−1(c) be an n - surface in Rn+1, where f : U → R is such that
∇f (q) 6= 0 for all q ∈ S, and let X be a smooth vector fields on U
whose restriction to S isa tangent vector field on S. If α : I → U is an
integral curve of X such that α(t0) ∈ S for some U, then α(t) ∈ S for all
t ∈ I.
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Proof.
Suppose α(t) ∈ S for some t ∈ I, t > t0. Let t1 denote the greatest
lower bound of the set {t ∈ I|t > t0 and α(t) ∈ S}. Then f (α(t)) = c
for all t0 ≤ t ≤ t1 so , by continuity f (α(t1)) = c; (ie) α(t1) ∈ S.
Let β : Ĩ → S be an integral curve through α(t1) of the restriction of X
to S. Then β is also an integral curve of X , sending 0 to α(t1), as is the
curve α̃ defined by , α̃(t) = α(t + t1).
By uniqueness of integral curves, α̃(t) = α(t − t1) = β(t − t1) ∈ S for
all t such that t − t1 is in the common domain of α̃ and β.
But this contradicts the fact that α(t) ∈ S for values of t arbitrary close
to t1.
Hence α(t) ∈ S for all t ∈ I with t > t0 the proof for t < t0 is similar.
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Definition

A subset S of Rn+1 is said to be connected for each pair p,q of points
in S there is continuous map α : [p,q]→ S, from some closed interval
[a,b] into S, such that α(a) = p and α(b) = q.

Remark
Thus S is connected if each pair of points in S can be joined by a
continuous , but not necessarily smooth, curve which lies completely in
S. Note, for example, that the n- sphere is connected if and only if
n ≥ 1.

Theorem

Let S ⊂ Rn+1 be a connected n- surface in Rn+1. Then there exists on
S exactly two smooth unit normal vector feilds N1 and N2 and
N2(p) = −N1(p) for all p ∈ S
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Proof.

Let f : U → R and c ∈ R be such that S = f−1(c) and ∇f (p) 6= 0 for all
p ∈ S. Then the vector field N1 on S defined by

N1(p) =
∇f (p)
‖∇f (p)‖

p ∈ S

clearly has the required properties as does the vector field N2 defined
by N2(p) = −N1(p) for all p ∈ S.
To show that there are the only two such vector feilds ,suppose N3
were another then for each p ∈ S, N3(p) must be a multiple of N1(p)
since both lie in the 1- dimension subspace S⊥p ⊂ Rn+1

p . Thus

N3(p) = g(p)N1(p)
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Proof.

where g : S → R is smooth function on S
(g(p) = N3(p).N1(p) for p ∈ S). Since N1(p) and N3(p) are both
unit vectors, g(p) = ±1 for each p ∈ S.
Finally, since g is smooth and S is connected, g must be constant on
C. Thus either N3 = N1 or N3 = N2. Note:

(i) A smooth unit normal vector field on a n - surface S in Rn+1 is
called an orientation on S.

(ii) According to the theorem just proved, each connected n - surface
in Rn+1 has exactly two orientations.

(iii) An n- surface together with a choice of orientation is called an
orientation n -surface.
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Remark

There are subsets of Rn+1 which must people would agree should be
called n -surfaces but on which there exists no orientations.

Example

An example is the mobius band B, the surface in Rn+1 obtained by
taking a rectangular strip of paper, twisting one end through 180◦, and
taping the ends together that there is no smooth unit normal vector
field on B can be seen by picking a unit normal vector at some point on
the centeral circle and trying to extend it continuously to a unit normal
vector field along this circle. After going around the circle once the
normal vector is pointing in the opposite direction.
Since there is a smooth unit normal vector fields on B, B cannot be
expressed as a level set f−1(c) of some smooth function f : U → R
with ∇f (p) 6= 0 for all p ∈ S, and hence B is not a 2 - surface according
to our definition. B is an example of an unorintable 2- surface.

DG V. Piramanantham Department of Mathematics 10 / 13



Definition

A unit vector in Rn+1
p ( p ∈ Rn+1) is called a direction at p. Thus an

orientation on an n- surface S in Rn+1 is by definition, a smooth choice
of normal direction at each point of S.

On a plane curve, an orientation can be used to define a tangent
direction at each point of the curve .

Remark
The positive tangent direction at the point p of the oriented plane curve
c is the direction obtained by rotating the orientation normal direction
at p through an angle of −π|2 where the direction of positive rotation is
counterclockwise.
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Example

On a 2- surface in R3, an orientation can be used to define a direction
of rotation in the tangent space at each point of the surface. Given
θ ∈ R, the positive θ- orientation at the point p of the oriented 2 -
surface S is the linear transformation Rθ : Sp → Sp defined by
Rθ(v) = (cos θ)v + (sin θ)N(p)× v where N(p) is the orientation normal
direction at p. Rθ is usually described as the right handed rotation
about N(p) through the angle θ.
On a 3 - surface in R4, an orientation can be used to define a sense of
handedness in the tangent space at each point of the surface.
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Example
Given an oriented 3- surface S and a point p ∈ S, an ordered
orthonormal basis {e1,e2,e3} for the tangent space Sp to S at p is

said to be right-handed if the determinant det


e1
e2
e3

N(p)

 is positive,

where ~N(p) = (p,N(p)) is the orientation normal direction at p and
~ei = (p,ei) for i = {1,2,3}; the basis is lefthanded if the determinant is
negative
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Example

On a n- surface in Rn+1 ( n arbitrary), an orientation can be used to
partition the collection of all ordered bases for each tangent space into
two subsets, those consistent with the orientation and those
inconsistent with the orientation.
An ordered basis {v1, v2 · · · , vn} ( not necessarily orthonormal) for the
tangent space Sp at the point p of the oriented n- surface S is said to
be consistent with the orientation N on S if the determinant

det


v1
v2
...

vn
N(p)

 is positive; the basis is inconsistent with N if the

determinant is negative. Here, as usual ~vi = (p, vi) and
~N(p) = (p,N(p)).
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