

Differential Geometry

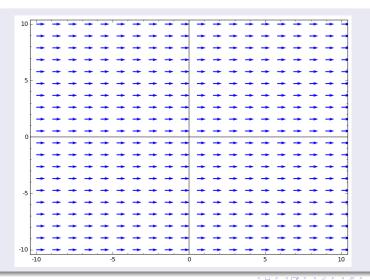
V. Piramanantham

Department of Mathematics Bharathidasan University, Tiruchirapalli - 620 024

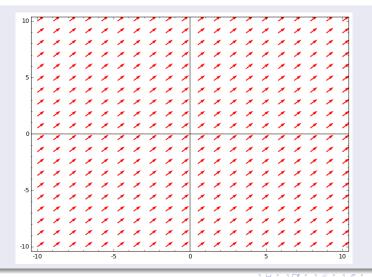
February 7, 2019

Vector Fields

Definition (Vector)

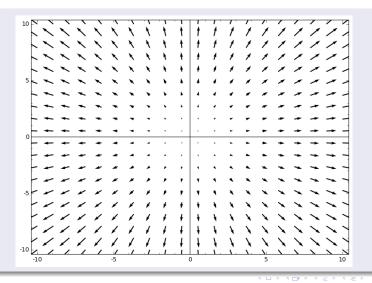

A vector at a point $p \in \mathbb{R}^{n+1}$ is a piar $\overrightarrow{v} = (p, v)$ where $v \in \mathbb{R}^{n+1}$.

Definition

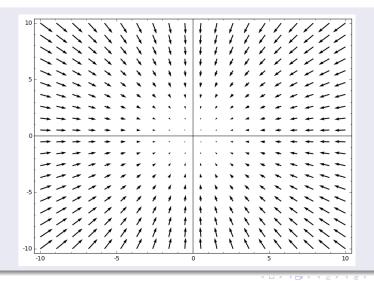

A vector field \overrightarrow{X} on an open set $U \subset \mathbb{R}^{n+1}$ is a function assignes to each point of U a vector at that point. A vector filed is represented by $\overrightarrow{X}(p) = (p, X(p))$ for some function $X : U \to \mathbb{R}^{n+1}$.

DG

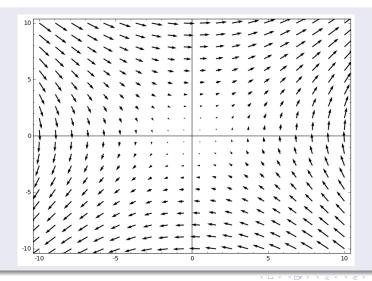
Example $X : \mathbb{R}^2 \to \mathbb{R}^2$ defined by X(p) = (1,0)

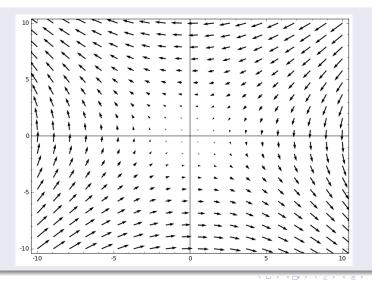


Example $X : \mathbb{R}^2 \to \mathbb{R}^2$ defined by X(p) = (1,1)



DG


Example $X: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $X(p) = \overline{(p,p)}$


Example $X: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $X(p) = (\overline{p, -p})$

Example $X: \mathbb{R}^2 \to \mathbb{R}^2$ defined by X((x,y)) = ((x,y),(y,x))

Example $X: \mathbb{R}^2 \to \mathbb{R}^2$ defined by X((x,y)) = ((x,y),(-y,-x))

