

Differential Geometry

V. Piramanantham

Department of Mathematics Bharathidasan University, Tiruchirapalli - 620 024

January, 2018

Level Sets

Definition

Given a funcion $f: U \to \mathbb{R}$, where $U \subset \mathbb{R}^{n+1}$,, its **level sets** are the sets $f^{-1}(c)$ defined, for each real number c, by

$$f^{-1}(c) = \{(x_1, x_2, \cdots, x_{n+1}) \in U : f(x_1, x_2, \cdots, x_{n+1}) = c\}$$

Remark

Then the numebr c is called the height of the level set, and $f^{-1}(c)$ is called the level set at theight c.

Graphs

Remark

Since $f^{-1}(c)$ is the solution set of the equation $f(x_1, x - 2, \dots, x_{n+1}) = c$, the level set $f^{-1}(c)$ is often described as "the set $f(x_1, x - 2, \dots, x_{n+1}) = c$."

Definition

The **graph** of a function $f: U \to \mathbb{R}$ is the subset of \mathbb{R}^{n+2} defined by

graph(
$$f$$
) = { $(x_1, x_2, \dots, x_{n+2}) \in \mathbb{R}^{n+2} : (x_1, x_2, \dots, x_{n+1}) \in U$
and $x_{n+2} = f(x_1, x_2, \dots, x_{n+1})$ }

Remark

- 1. For $c \ge 0$, the level set of f at height c is just the set of all points in the domain of f over which the graph is at distance c.
- 2. For c < 0, the level set of f at height c is just the set of all points in the domain of f under which the graph is at distance -c.

Example

consider the function f; $\mathbb{R}^{n+1} \to \mathbb{R}$ defined by $f(x_1, x_2, \cdots, x_{n+1}) = x_1^2 + \cdots + x_{n+1}^2$. The level sets $f^{-1}(c)$ are empty for c < 0, consist of a single point (the origin) if c = 0, and for c > 0 consist of two points if n = 0, circle centered at the origin with radius \sqrt{c} if n = 1, spheres centered at the origin with radius \sqrt{c} if n = 2, etc.

ODF

Example

Consider the function $f: \mathbb{R}^3 \to \mathbb{R}$ defined by $f(x, y, z) = x^2 + y^2 + z^2$. Then the level sets for the values of c are as follows:

Value of c	Level set
<i>c</i> < 0	empty set
c=0	{(0,0)}
<i>c</i> > 0	sphere of radius \sqrt{c} with center at origin

Sphere S²

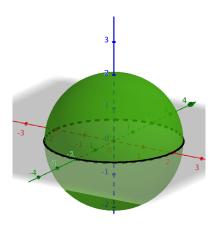
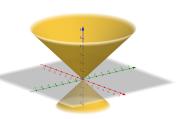
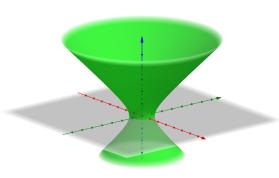



Figure: Level set of $(x, y, z) = x^2 + y^2 + z^2$ at c = 4

Cone in \mathbb{R}^3


Example

Consider the function $f: \mathbb{R}^3 \to \mathbb{R}$ defined by $f(x, y, z) = x^2 + y^2 - z^2$. Then the level sets for the values of c are as follows:

Figure: Level set of $f(x, y, z) = x^2 + y^2 - z^2$ at c = 0

Hyperpoloid of one sheet in \mathbb{R}^3

Figure: Level set of $f(x, y, z) = x^2 + y^2 - z^2$ at c = 1

Hyperpoloid of two sheet in \mathbb{R}^3

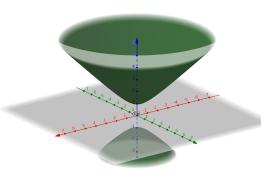


Figure: Level set of $f(x, y, z) = x^2 + y^2 + z^2$ at c = -1