Sustainability development

Dr.S.Umamaheswari

TREN 1F90

Introduction to Sustainability

- Definitions
 - environment
 - policy
 - scale
 - jurisdiction
- Defining Sustainable Development
- About Interdisciplinarity

Environmental effects

- 3 main ways through the flows of:
- -MATERIALS
- **-ENERGY**
- -INFORMATION
 - -> fundamental 'spheres of influence' for sustainability

may be:

- physical / geographical
 - ranking based upon size, dimension, geographical subunit, etc.
- ecological
 - individual, deme, community, population
- jurisdictional
 - local, municipal, regional, federal, global

scale

GLOBAL / MACRO

United Nations

-

governments

•

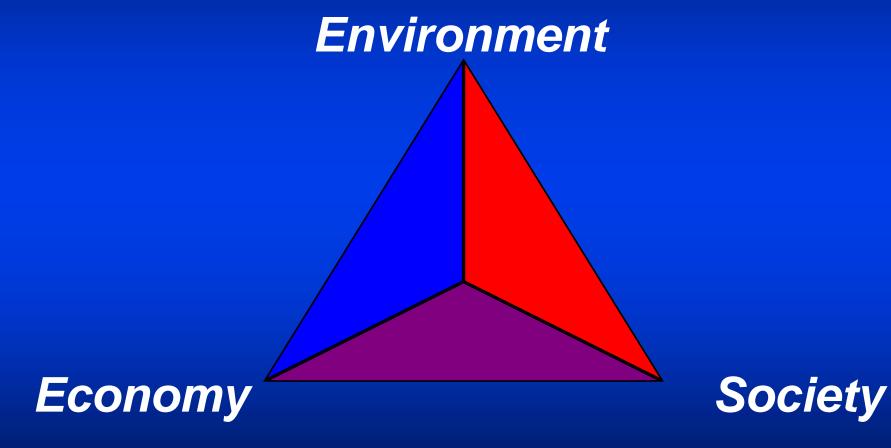
ngos / community groups

individuals

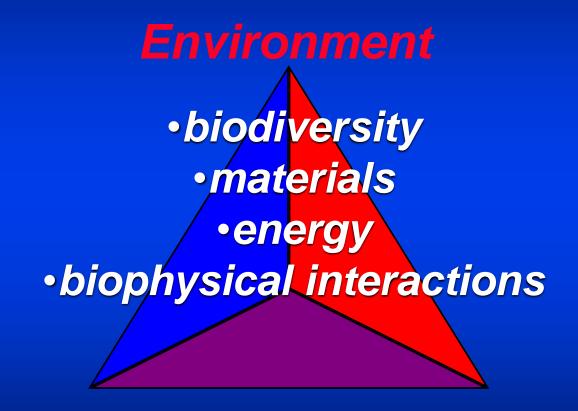
jurisdictional / decision making

earth continent country province region municipality neighborhood household individual spatial

LOCAL / MICRO


Jurisdiction

- the legal power to administer and enforce the law
- the exercising of this power
- the region within which this power is valid or in which a person has authority
- authority

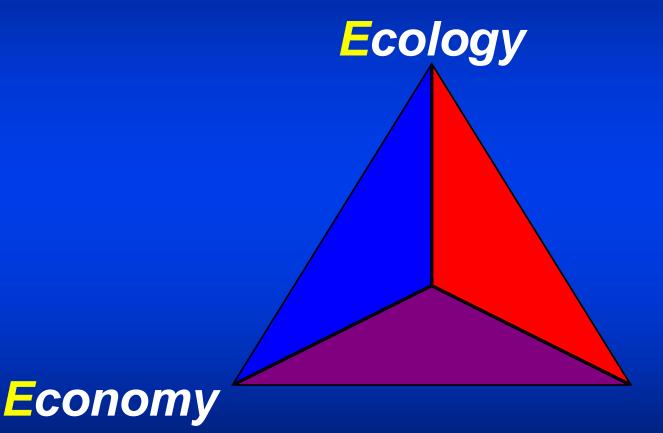

Sustainable development:

 meeting the needs of the present without compromising the ability of future generations to meet their own needs.

 World Commission on Environment and Development (1987): Our Common Future

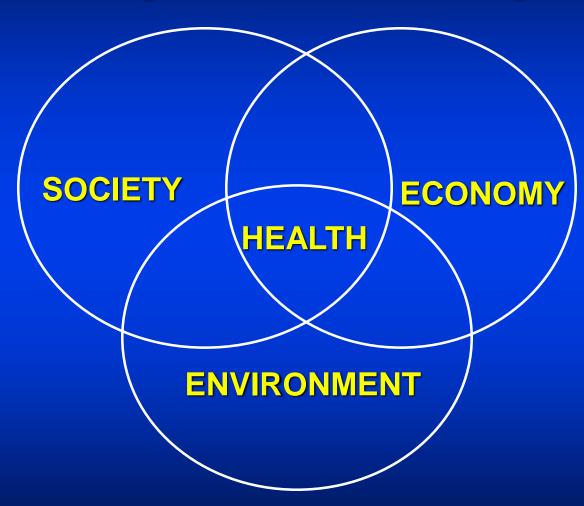
- World Commission on Environment and Development, 1987

money and capital
employment
technological growth
investment
market forces


Economy

human diversity (cultural, linguistic, ethnic)
 equity (dependence / independence)
 quality of life
 institutional structures and organization
 political structures

- World Commission on Environment and Development, 1987


Society

The '3 Es' Model

Equity

The Healthy Community Model

Sustainability: PROBLEMS

- Depletion of finite resources
 - fuels, soil, minerals, species
- Over-use of renewable resources
 - forests, fish & wildlife, fertility, public funds
- Pollution
 - air, water, soil
- Inequity
 - economic, political, social, gender
- Species loss
 - endangered species and spaces

Sustainability: SOLUTIONS

- Cyclical material use
 - emulate natural cycles; 3 R's
- Safe reliable energy
 - conservation, renewable energy, substitution, interim measures
- Life-based interests
 - health, creativity, communication, coordination, appreciation, learning, intellectual and spiritual development

Two key sustainable development concepts:

EQUITY

LIMITS TO GROWTH

Two key sustainable development concepts:

the concept of <u>needs</u>, particularly the essential needs of the world's poor

Contrast with: EQUALITY

- the state or quality of being equal; correspondence in quantity, degree, value, rank, or ability.
- uniform character, as of motion or surface.

Two key sustainable development concepts:

The idea of <u>limitations</u> (ecological, technological, and social) which affect the environment's ability to meet present and future needs

LIMITS TO GROWTH

- quantitative and qualitative limits
- living within the regenerative and assimilative capacities of the planet

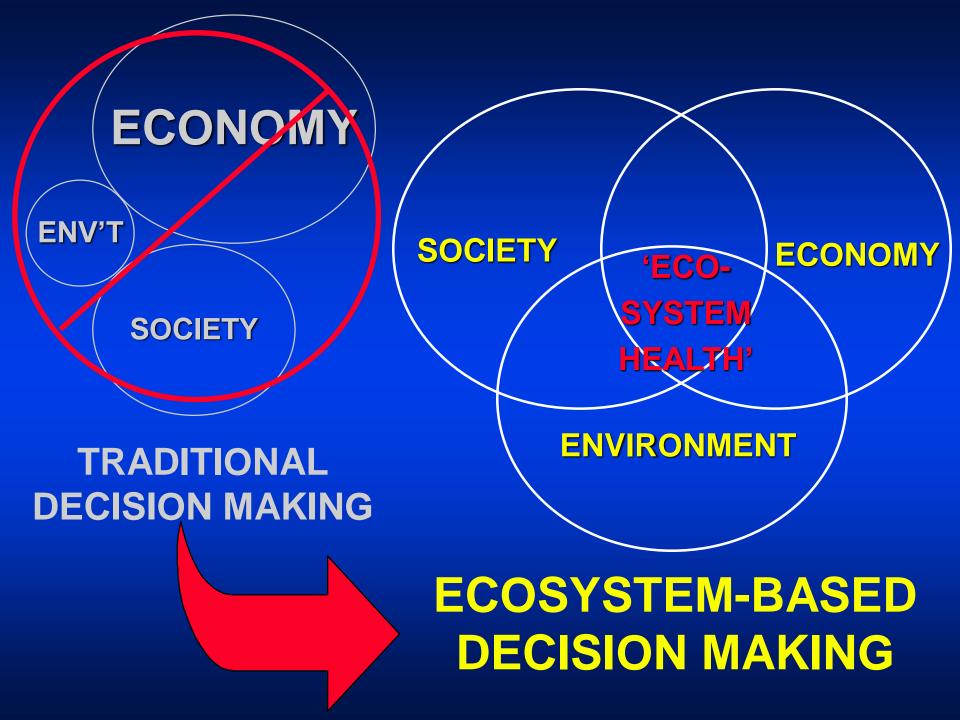
Sustainable development...

implies limits

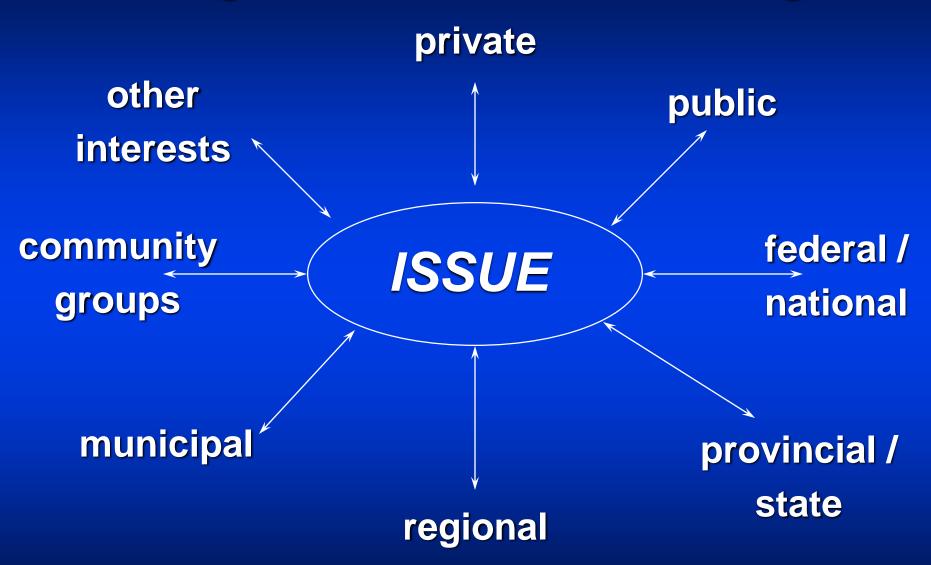
Not predefined absolute limits, but limitations imposed by:

- the ability of the biosphere to absorb the effects of human activities
- adaptability of human social and political organization
- technology

Sustainable development and economic growth


Economic growth must be made:

- less material intensive ('dematerialization of the economy')
- less energy intensive
- more equitable in its impacts
- Economic growth may be reduced or curtailed to meet limitations imposed by environment, technology, or society


Institutional gaps impeding sustainable development

2 major gaps:

- fragmented decision making
 - narrow mandates, jurisdictional rigidity, lack of communication and coordination
- lack of accountability
 - failure to make the bodies whose policy actions degrade the environment responsible for their actions

Fragmented decision-making

Integrated decision-making

Environment AND Economy

- \$1 million to develop new process
- \$4 million savings in first year (no CFCs)
- \$50 million savings to year 2000
- international environmental prize -> great publicity
- contract with Mexico for industrial innovation (very lucrative)

	<u>Industry</u>	<u>Biodiversity</u>	<u>Transportation</u>
• radical	change in demand for product	• apply landscape ecology principles to human activity	• complete redesign of our cities
• anticipatory	• change in industrial process	• establish national parks (12%) to protect habitats	• alternative fuels for cars
• reactive	• sewage treatment plant for wastes	• zoo / seed bank for endangered species	• catalytic converters

values

individual, cultural, social, spiritual, moral

Definable sets of values constitute

ideologies

Short form summary of basic values that eliminates the need to engage in deep philosophical investigations every time action is required

values

individual, cultural, social, spiritual, moral

Definable sets of values constitute

ideologies

(e.g. Industrial Capitalism, Marxism, Christianity, Liberalism, Socialism, Conservatism, Judaism)

...which give rise to

strategies

practical applications of ideologically consistent ideas, actions, policies and programs

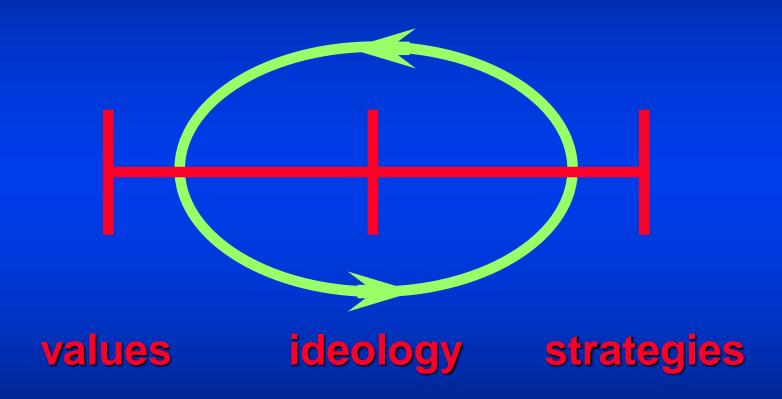
- holistic perspective
 - everything is connected to everything else
 - parts can only be understood in the context of the whole
- nature as a living organism or system
 values ideology strategies

(after Macdonald, D. 1991. The Politics of Pollution. McClelland and Stewart, Toronto: p.33)

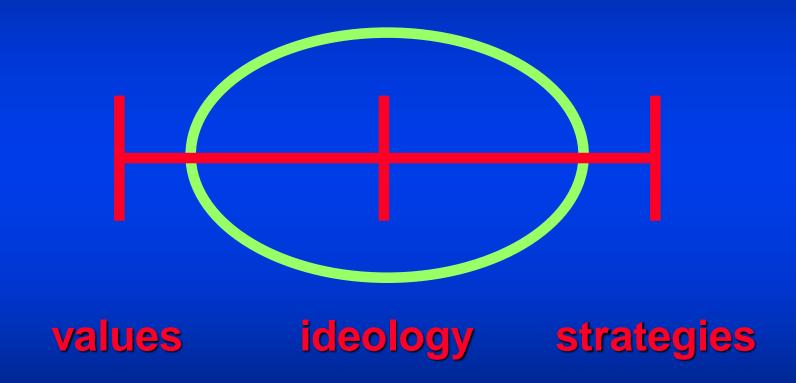
- humans living within nature
 - -> inherent value of other organisms and inanimate objects
- limits to growth

values

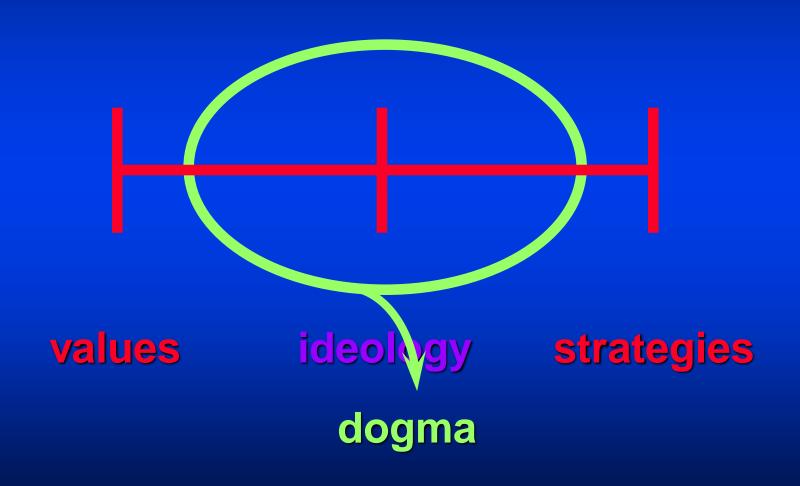
ideology strategies


(after Macdonald, D. 1991. The Politics of Pollution. McClelland and Stewart, Toronto: p.33)

- appropriate technology
 - matching the scope and scale of technology to the task at hand
 - principles of durability and efficiency
 values
 ideology
 strategies
 - recognition that new technology brings both benefits <u>and</u> problems


appropriate scale

appropriate sizes for institutions, social organizations, communities


accessible and accountable decision-making values ideology strategies in public and private sectors

• feedback loop allows for reflection, re-evaluation, adaptive management

• if no feedback loop: inflexible, unresponsive

Sustainability: How do we move from rhetoric to reality?

principles

policy

To be useful, principles of sustainability must:

- be easily understood
- be applicable in many contexts
- be transferrable across scales
 - translate well from fundamental values into applied policy and practical action
 - identify possibilities for radical transformative change AND positive incremental change

Some

Principles of Sustainability

in the literature:

- Our Common Future (WCED 1987)
- Principles defining sustainable development (OSEM 1989)
- Defining a sustainable society (Robinson et al. 1990,1996)
- Agenda 21 (1992)
- Six principles of sustainable development (ORTEE 1992)
- Guideposts for a sustainable future (Nickerson 1993)
- Framework for Sustainable Development (CIDA 1994)
- The Natural Step (Robert et al . 1994)
- Sustainability Principles (ORTEE 1994), etc.

disciplinary Multidisciplinary Interdisciplinary Transdisciplinary

- what are the differences?

<u>Reference</u>: Stefanovic, Ingrid. 1996. Interdisciplinarity and Wholeness: Lessons from Eco-Research. Environments 23(3): 74-94.

Disciplinary:

 often associated with discipline-specific vocabularies, methods, and assumptions

Examples of disciplines:

sociology, philosophy, biology, political science, chemistry, economics, geography, mathematics...

Multidisciplinary:

 standard disciplinary approaches are applied to a common research question, problem or issue

 insights achieved through an approach which is essentially additive rather than integrative

Multidisciplinary:

 a spontaneous coalescence of these disparate approaches is anticipated

 arguably the approach which produces the most substantive research results

Interdisciplinary:

 the issue, problem, or concern defines the disciplinary expertise which is brought to bear

...arguably the most effective policyoriented problem-solving approach

Interdisciplinary:

 a level of integration which involves more than an additive analysis of the disciplinary perspectives

 insights are achieved through an approach which is explicitly integrative -> an a priori attempt is made at synthesis across disciplinary boundaries

Transdisciplinary:

 recognizes the interconnectedness of all aspects of reality and knowledge

 Goal: distinctions amongst disciplines are eliminated completely

Transdisciplinary:

 "an attempt to transcend the dynamics of a dialectical synthesis to grasp the total dynamics of reality as a whole"

- Examples of transdisciplinary endeavour:
 - general systems theory
 - phenomenology