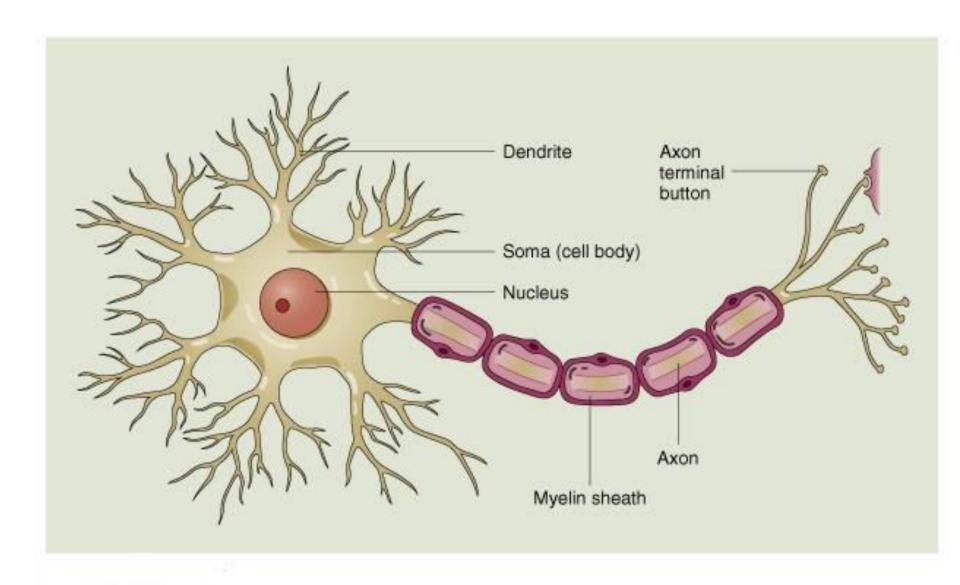

The Nerve Cell

Prof. Narkunaraja Shanmugam


Dept. Of Biomedical Science School of Basic Medical Sciences Bharathidasan University

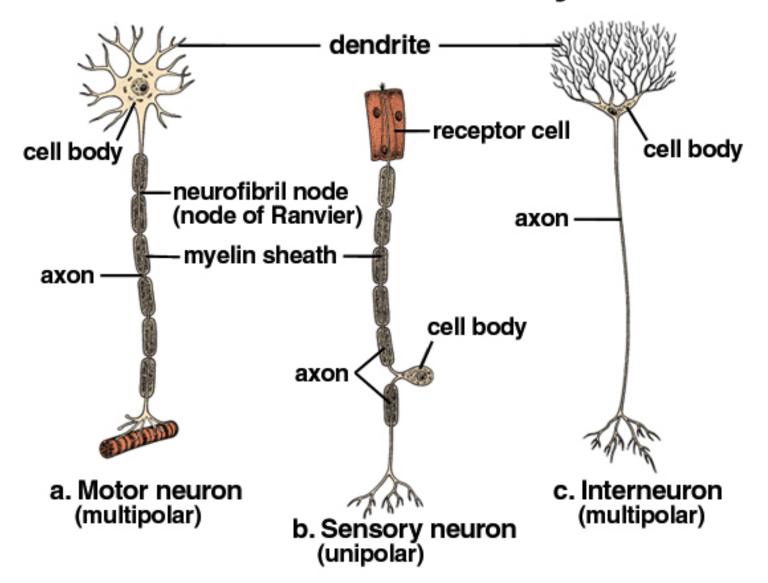
The Neuron

- The basic functional unit of the nervous system.
- <u>Function</u>: Send impulses to and from the CNS and PNS and the effectors (muscles/glands)

Neuron Structure

- <u>Dendrite</u> → Fine hair-like extensions on the end of a neuron.
 - Function: receive incoming stimuli.
- <u>Cell Body or Soma</u> → The control center of the neuron.
 - Function: Directs impulses from the dendrites to the axon.
- Nucleus → Control center of the Soma.
 - Function: Tells the soma what to do.
- Axon → Pathway for the nerve impulse (electrical message) from the soma to the opposite end of the neuron.
- Myelin Sheath → An insulating layer around an axon. Made up of Schwann cells.
- Nodes of Ranvier → Gaps between schwann cells.
 - Function: Saltatory Conduction (Situation where speed of an impulse is greatly increased by the message 'jumping' the gaps in an axon).

@ The McGraw-Hill Companies, Inc. Permission required for reproduction or display. **Neuron Structure** Cell body, **Dendrites** Schwann **Nucleus** cell Myelin Node of sheath Ranvier


Types of Neurons

- There are 3 types of neurons.
- Sensory Neurons → Neurons located near receptor organs (skin, eyes, ears).
 - ☐ Function: receive incoming stimuli from the environment.
- 2. <u>Motor Neurons</u> → Neurons located near *effectors* (muscles and glands)
 - Function: Carry impules to effectors to initiate a response.
- 3. Interneurons → Neurons that relay messages between other neurons such as sensory and motor neurons. (found most often in Brain and Spinal chord).

Types of Neurons

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Neuron anatomy

Nerves

Nerves

Collections of neurons that are joined together by connective tissue.

 Responsible for transferring impulses from receptors to CNS and back to effectors.

Sympathetic Effects

- Fight, Fright or flight response
- Release of Neurotransmitters (NT)-
 - ➤ Norepinephrine (NT) from postganglionic fibers
 - > Epinephrine (NT) from adrenal medulla

Sympathetic Effects

- Mass activation prepares for intense activity
 - ➤ Heart rate (HR) increases
 - > Bronchioles dilate
 - ➤ Blood [glucose] increases

Sympathetic Effects

- GI motility decreases
- Contraction of sphincters
- Relaxation of
 - > Detrusor muscle
 - ➤ Ciliary muscle
- Mydriasis

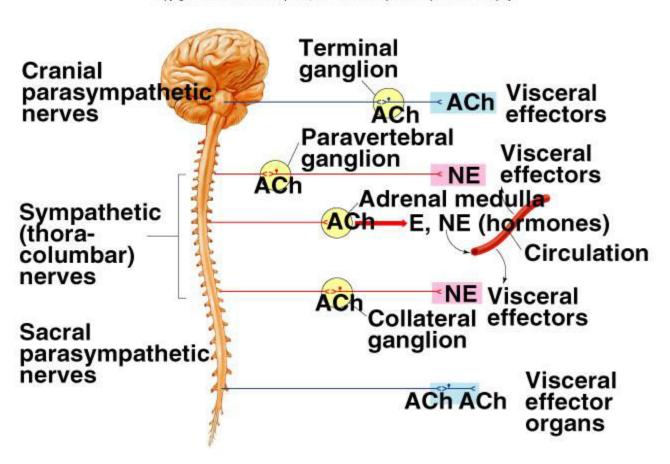
Parasympathetic Effects

- Normally not activated as a whole
 - Stimulation of separate parasympathetic nerves.
- Release ACh as NT
- Relaxing effects-
 - ➤ Decreases HR.
 - ➤ Dilates visceral blood vessels.
 - ➤ Increases digestive activity.

Parasympathetic Effects

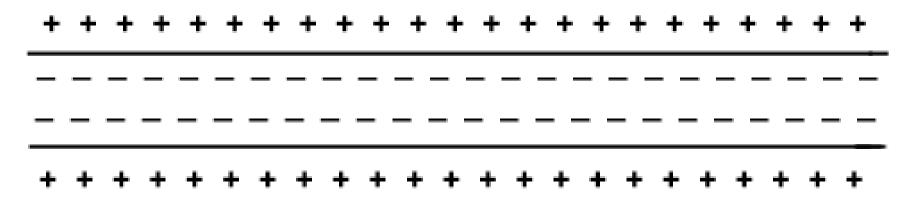
- Bronchonstriction
- GI motility increases
- Relaxation of sphincters
- Contraction of
 - > Detrusor muscle
 - ➤ Ciliary muscle
- Miosis

Adrenergic and Cholinergic Synaptic Transmission


- ACh is NT for all preganglionic
 - ➤ Sympathetic fibers
 - ➤ Parasympathetic fibers
- Transmission at these synapses is termed cholinergic
- All preganglionic fibers terminate in autonomic ganglia

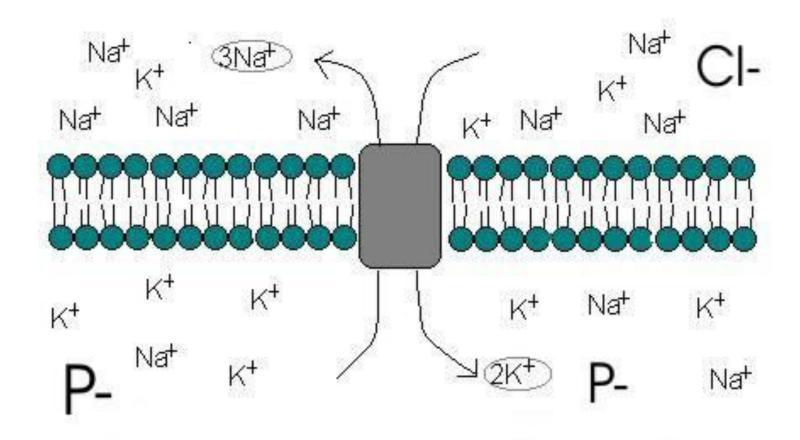
Adrenergic and Cholinergic Synaptic Transmission

- ACh is NT released by -
 - Most postganglionic parasympathetic fibers
 - Some postganglionic sympathetic fibers
- Postganglionic autonomic fibers innervate the target tissue


Adrenergic and Cholinergic Synaptic Transmission

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

How Do Neurons Operate?


- Neuron at Rest → Resting Potential
 - Occurs when the neuron is at rest.
 - A condition where the <u>outside</u> of the membrane is <u>positively(+)</u> charged compared to the <u>inside</u> which is <u>negatively(-)</u> charged.
 - Neuron is said to be <u>polarized</u>.
 - Neuron has a voltage difference of -70 mV

Section of an axon during the resting potential.

How is resting potential maintained?

Ion Distribution

How is resting potential maintained?

- At rest, the sodium gates are closed.
- Membrane is 50 times more permeable to K⁺ ions causing them to "leak" out.
- This causes outside of membrane to have an abundance of + charges compared to inside. The inside of the membrane is negative compared to the outside. This is helped by the (-) proteins etc.
- The "sodium-potassium" pump pulls 2 K⁺ ions in for 3 Na⁺ ions sent out. This further creates a charge difference!!