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Fig. 19.7 Production of a mutation as a result of a mismatch caused by wobble base

pairing
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Fig. 19.8 Spontaneous generation of addition and deletion mutants by DNA

looping-out errors during replication
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Fig. 19.9 Deamination of cytosine to uracil (a); deamination of 5-methylcytosine to

thymine
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Deamination removes an amino group
from a base (e.g., cytosine to uradil)
(Figure 19.9).

I. Uracil is an abnormal base in
DNA, and it will usually be
repaired.

1. If uracil is not replaced, it will
pair with an A during replication,
resulting in a CG-to-TA
transition.

Both prokaryotic and eukaryotic
DNA have small amounts of 5
o) methylcytosine (5™C) in place of
the normal C.
(1) Deamination of 5™C produces T.

(2) T is.a normal nucleotide in DNA,
T so it is not detected by repair
mechanisms.

(3) Deamination of 5™C results in
CG-to-TA transitions.

(4) Locations of 5™C in the
chromosome are often detected as
mutational hot spots

Thymine (T)



Fig. 19.11 Production of thymine dimers by ultraviolet light irradiation
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Ultraviolet (UV) causes photochemical changes in the DNA.

I. UV has lower-energy wavelengths than X rays, and so has limited penetrating
power.

il.  However, UV in the 254-260 nm range is strongly absorbed by purines and
pyrimidines, forming abnormal chemical bonds.

(1) A common effect is dimer formation between adjacent pyrimidines,
commonly thymines (designated TAT) (Figure 19.11).

(2) CA/C, CAT and TAC dimers also occur, but at lower frequency. Any
pyrimidine dimer can cause problems during DNA replication.

(3) Most pyrimidine dimers are repaired, because they produce a bulge in
the DNA helix. If enough are unrepaired, cell death may result.



Fig. 19.12a, b Mutagenic effects of the base analog 5-bromouracil (5BU)
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Fig. 19.12¢c Mutagenic effects of the base analog 5-bromouracil (5BU)

c) Mutagenic action of 5BU
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Fig. 19.13a Action of three base-modifying agents
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Hydroxylating agents include hydroxylamine (NH,OH).

(1) NH,OH specifically modifies C with a hydroxyl

group

OH), so that it pairs only with A instead of with G.

(2) NH,OH produces only CG-to-TA transitions, and so
revertants do not occur with a second treatment.

(3) NH,OH mutants, however, can be reverted by agents
that do cause TA-to-CG transitions (e.g., 5BU and HNO,).



Fig. 19.13b, ¢ Action of three base-modifying agents
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Fig. 19.14 Intercalating mutations

a) Mutation by addition
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DNA repair mechanisms:

Enzyme-based repair mechanisms prevent and repair mutations and damage to DNA in
prokaryotes and eukaryotes.

Types of mechanisms

DNA polymerase proofreading —

DNA polymerase proofreading corrects most of the incorrect nucleotide insertions
that occur during DNA synthesis, which stalls until the wrong nucleotide is replaced
with a correct one.

a. The role of 3’-to-5° exonuclease activity is illustrated by mutator mutations in E.
coli, which confer a much higher mutation rate on the cells that carry them.

b. The mutD gene, encoding the e subunit of DNA polymerase Ill, is an example. Cells
mutant in mutD are defective in proofreading.

Photoreactivation (also called light repair) — UV-induced pyrimidine dimers are
repaired using photoreactivation (light repair).
a. Near UV light (320-370 nm) activates photolyase (product of the phr gene) to split
the dimer.
b. Photolyases are found in prokaryotes and simple eukaryotes, but not in humans.




Demethylating DNA repair enzymes

Damage by alkylation (usually methyl or ethyl groups) can be removed by

specific DNA repair enzymes.

a. For example, O%-methylguanine methyltransferase (from the ada gene)
recognizes O%-methylguanine in DNA, and removes the methyl group.

b. Demethylation restores the base to its original form.
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Fig. 7.16 Nucleotide excision repair (NER) of pyrimidine dimmer and other
damage-induced distortions of DNA
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It was discovered in 1964. It is called
dark repair, the excision repair system, or
the nucleotide excision repair (NER)
system.

a. In E. coli, NER corrects pyrimidine dimers
and other damage-induced distortions of
the DNA helix.

b. The proteins required are UvrA, UvrB,
UvrC and UvrD (encoded by genes of the
same name) (Figure 19.17).

c. Acomplex of two UvrA and one UvrB
proteins slides along the DNA. When it
encounters a helix distortion, the UvrA
subunits dissociate, and a UvrC binds the
UvrB at the lesion.

d. When UvrBC forms, the UvrC cuts 4-5
nucleotides from the lesion on the 3’ side,
and eight nucleotides away on the 5’ side.
Then UvrB is released and UvrD binds the
5’ cut end.

e. UvrD is a helicase that unwinds the region
between the cuts, releasing the short
ssDNA, while DNA polymerase | fills the
gap and DNA ligase seals the backbone.

f. Inyeast and mammalian systems, about
12 genes encode proteins involved in
excision repair.



Base excision repair

(b)

1.

modified bases are recognized
by relatively specific DNA
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Fig. 7.17 Mechanism of mismatch correction repair
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(1) DNA proofreading during replication
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DNA Repair Mechanisms

The proteins of DNA replication also play roles in the life-preserving repair
mechanisms, helping to ensure the extract replication of template DNA.




Recombination based DNA
repair at replication fork, also
called post-replication repair
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