Tricarboxylic Acid (TCA) Cycle Kreb's Cycle/Citric Acid Cycle

Dr. S.D. Saraswathy
Assistant Professor
Department of Biomedical Science
Bharathidasan University, Tiruchirappalli

Introduction

- Organisms derive the majority of their energy from the Kreb's Cycle, also known as the TCA cycle.
- Glycolysis oxidizes sugar to pyruvate which is converted to acetyl-CoA in mitochondria.
- Proteins and fatty acid are also broken down to yield Acetyl CoA.
- TCA cycle produce energy by oxidizing acetyl-CoA.
- Provides NADH (reducing equivalents) which is carried to the electron transport chain (ETC) for synthesis of ATP by the process called oxidative phosphorylation.
- Also, generates energy (GTP).
- Also, provides intermediates for amino acid synthesis.

Discovered CAC in Pigeon Flight Muscle

Hans Krebs, 1900-1981

Hans Krebs, 1900-1981

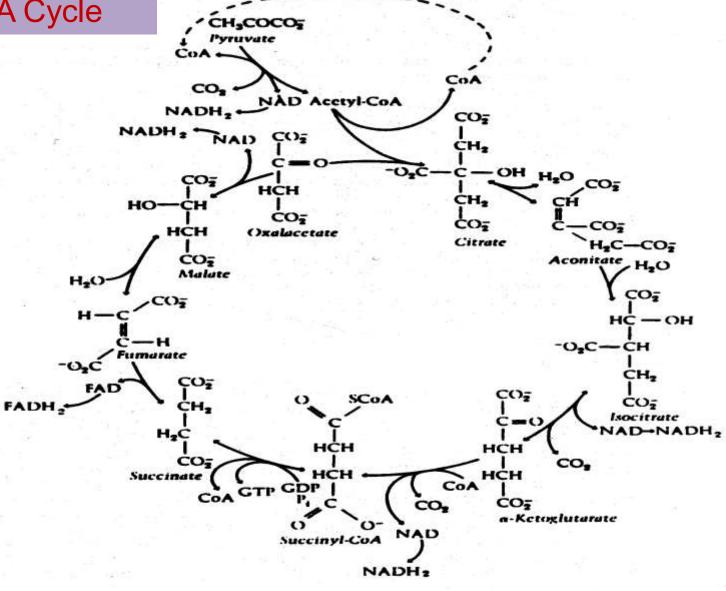
Unnumbered 16 p633 Lehninger Principles of Biochemistry, Sixth Edition © 2013 W. H. Freeman and Company

Krebs or TCA Cycle

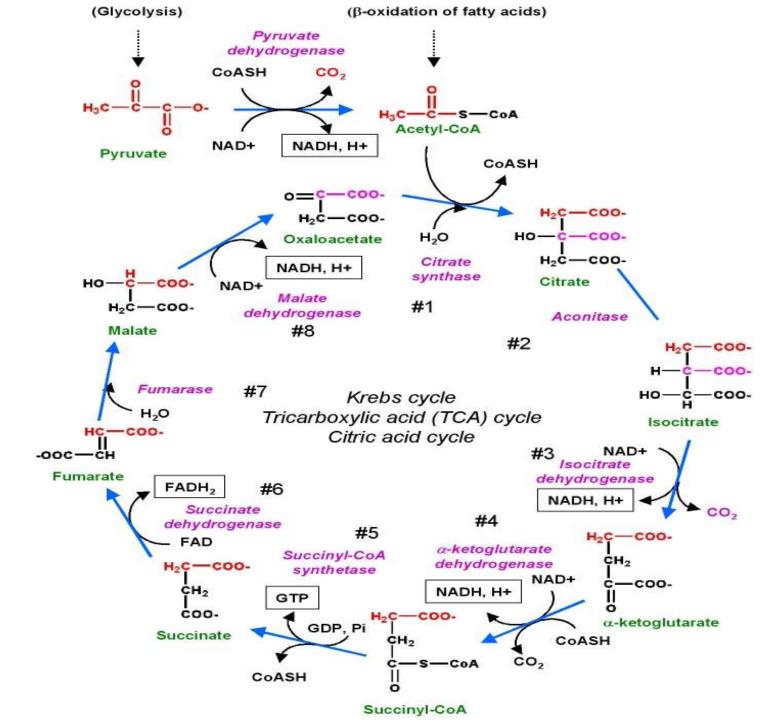
- Location: In Mitochondria of eukaryotes
- The Kreb's Cycle is an aerobic process
- The reason oxygen is required is because the NADH and [FADH₂] produced in the Kreb's Cycle are able to be oxydized in the ETC thus replenishing the supply of NAD+ and [FAD].
- In order to enter the Kreb's Cycle pyruvate must first be converted into Acetyl-CoA by pyruvate dehydrogenase complex found in the mitochondria which is an oxidative process wherein NADH and CO₂ are formed.

Krebs or TCA Cycle

Pyruvate is decarboxylated to Acetyl-Co which enters into TCA cycle.


The reaction is Catalyzed by large enzyme-Pyruvate dehydrogenase (PDH) complex (mitochondrial matrix).

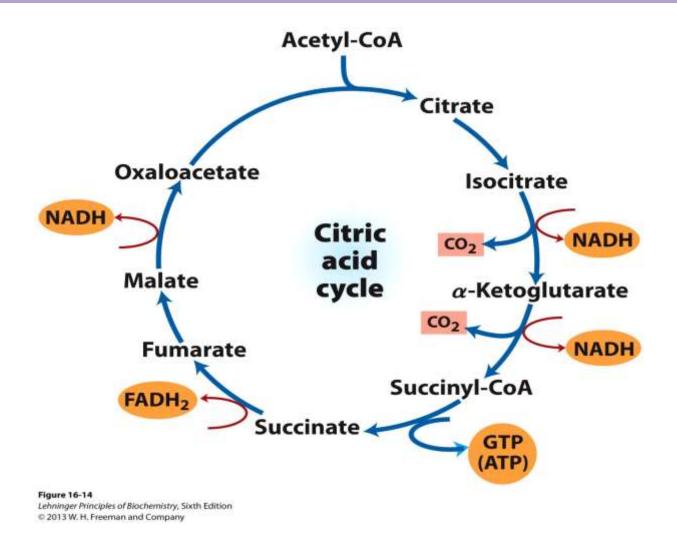
PDH is a Complex Enzyme


 $\Delta G^{\prime \circ} = -33.4 \text{ kJ/mol}$

Krebs or TCA Cycle

Overall reaction: Pyruvate + 4NAD + FAD -> 3CO₂ + 4NADH₂+ FADH₂
GDP + phosphate -> GTP
GTP + ADP -> GDP + ATP

Oxidative phosphorylation: 4NADH₂ = 12ATP | 15ATP | FADH₄ = 2ATP



TCA Cycle: Overall reaction

Acetyl CoA + 3NAD+ + FAD + GDP + Pi + 2H₂O

2CO₂ + CoA + 3NADH + FADH₂ + GTP + H⁺

TCA Cycle: Energetics

• The Kreb's Cycle gives 3 moles of NADH, 1 mole of FADH and 1 mole of ATP per cycle of substrate i.e per 1 mole of Acetyl CoA.

Energetics of Glycolysis and TAC in ATPs

TABLE 16-1

Stoichiometry of Coenzyme Reduction and ATP Formation in the Aerobic Oxidation of Glucose via Glycolysis, the Pyruvate Dehydrogenase Complex Reaction, the Citric Acid Cycle, and Oxidative Phosphorylation

	Number of ATP or reduced coenzyme directly formed	Number of ATP ultimately formed*
Glucose → glucose 6-phosphate	-1 ATP	-1
Fructose 6-phosphate → fructose 1,6-bisphosphate	−1 ATP	-1
2 Glyceraldehyde 3-phosphate → 2 1,3-bisphosphoglycerat	te 2 NADH	3 or 5 [†]
2 1,3-Bisphosphoglycerate → 2 3-phosphoglycerate	2 ATP	2
2 Phosphoenolpyruvate → 2 pyruvate	2 ATP	2
2 Pyruvate → 2 acetyl-CoA	2 NADH	5
2 Isocitrate \rightarrow 2 α -ketoglutarate	2 NADH	5
2 α-Ketoglutarate → 2 succinyl-CoA	2 NADH	5
2 Succinyl-CoA → 2 succinate	2 ATP (or 2 GTP)	2
2 Succinate → 2 fumarate	2 FADH ₂	3
2 Malate → 2 oxaloacetate	2 NADH	5
Total		30-32

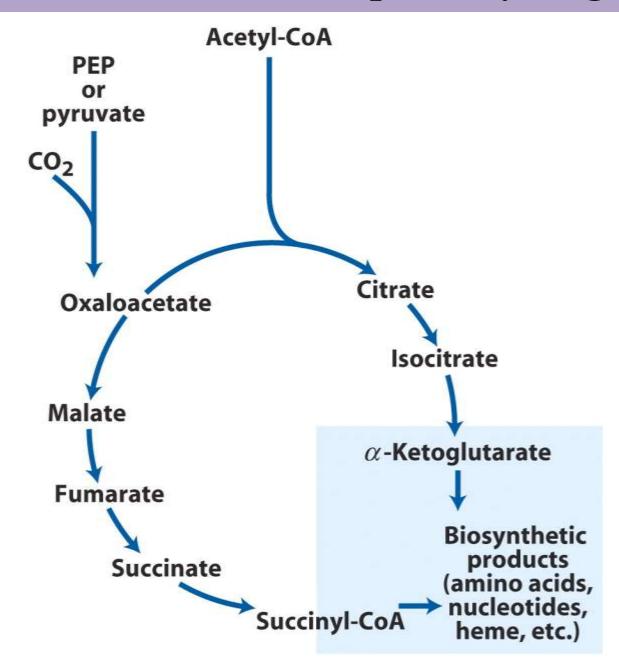

^{*}This is calculated as 2.5 ATP per NADH and 1.5 ATP per FADH,. A negative value indicates consumption.

Table 16-1

Lehninger Principles of Biochemistry, Sixth Edition © 2013 W. H. Freeman and Company

This number is either 3 or 5, depending on the mechanism used to shuttle NADH equivalents from the cytosol to the mitochondrial matrix; see Figures 19–30 and 19–31.

TAC in Anaerobic Not-Respiratory Organisms

Anaplerotic Reactions

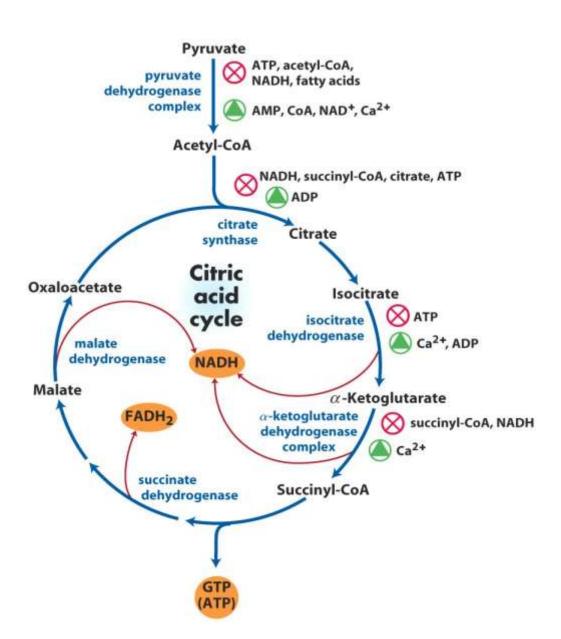

TABLE 16-2	Anaplerotic Reactions	
Reaction		Tissue(s)/organism(s)
Pyruvate + HC	$D_3^- + ATP \xrightarrow{\text{pyruvate carboxylase}} \text{oxaloacetate} + ADP + P_i$	Liver, kidney
Phosphoenolpy	vruvate + CO ₂ + GDP PEP carboxykinase oxaloacetate + GTP	Heart, skeletal muscle
Phosphoenolpyruvate + HCO ₃ ← PEP carboxylase oxaloacetate + P _i		Higher plants, yeast, bacteria
Pyruvate + HC	D ₃ [−] + NAD(P)H malic enzyme malate + NAD(P) ⁺	Widely distributed in eukaryotes and bacteria

Table 16-2

Lehninger Principles of Biochemistry, Fifth Edition

© 2008 W. H. Freeman and Company

Regulation of Citric Acid Cycle

Control of the Pyruvate Dehydrogenase complex

Regulation by its products

NADH & Acetyl-CoA : inhibit

While

NAD+ & CoA stimulate

Regulation by energy charge

ATP: inhibit

While

AMP : stimulate

Regulation of Citric Acid Cycle

Three Control sites:

- Enzyme: citrate synthase
- Inhibited by ATP

```
Site 2 - Reaction 3

Isocitrate \longrightarrow \alpha-Ketoglutarate
```

- Enzyme: isocitrate dehydrogenase
- Inhibited by ATP & NADH
- Stimulated by ADP & NAD+

Regulation of Citric Acid Cycle

Site 3 - Reaction 4

- α -Ketoglutarate \longrightarrow Succinyl CoA
- Enzyme: α -Ketoglutarate dehydrogenase
- Similar to PDH complex
- Inhibited by Succinyl CoA & NADH also high-energy charge.
- In the Kreb's Cycle is inhibited by a high energy charge and stimulated by a low energy charge