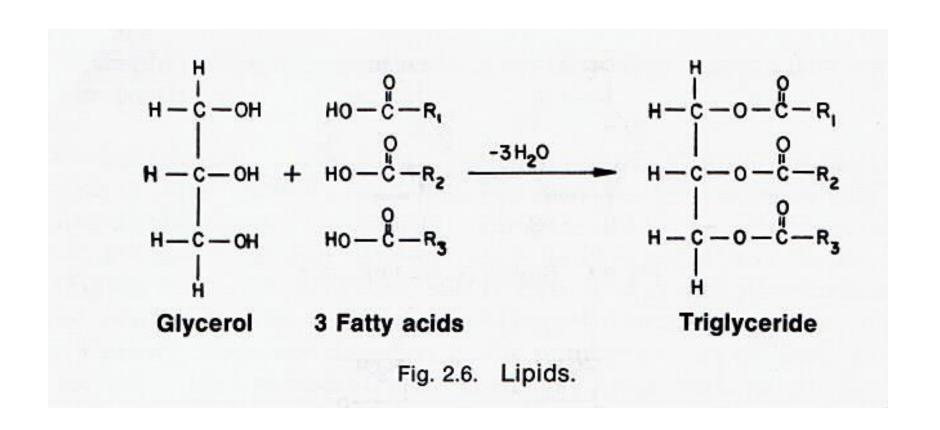
Lipids


Prof. Narkunaraja Shanmugam

Dept. Of Biomedical Science School of Basic Medical Sciences Bharathidasan University

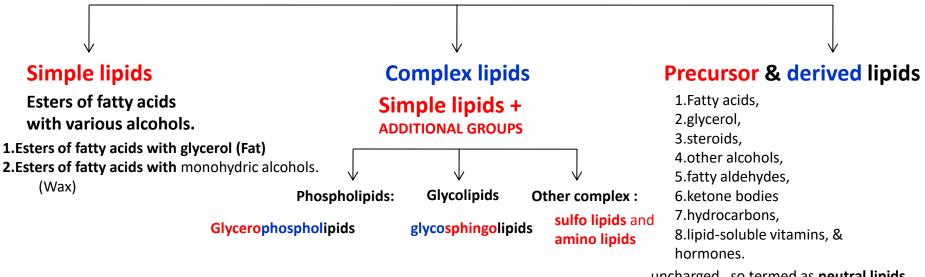
Part 1: Lipid Characteristics

- Lipid = a compound that is insoluble in water, but soluble in an organic solvent (e.g., ether, benzene, acetone, chloroform)
- "lipid" is synonymous with "fat", but also includes phospholipids, sterols, etc.
- chemical structure: glycerol + fatty acids

Lipid Molecule

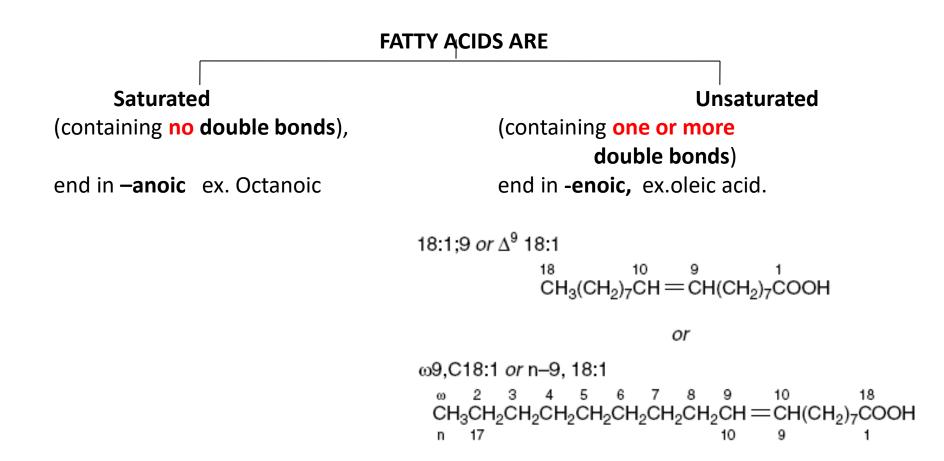
Introduction

- Fatty acids play several important roles:
 - 1. Building blocks for phospholipids and glycolipids
 - 2. Target proteins to membranes
 - High energy source of fuel
 - Fatty acid derivatives are used as hormones and intracellular messengers

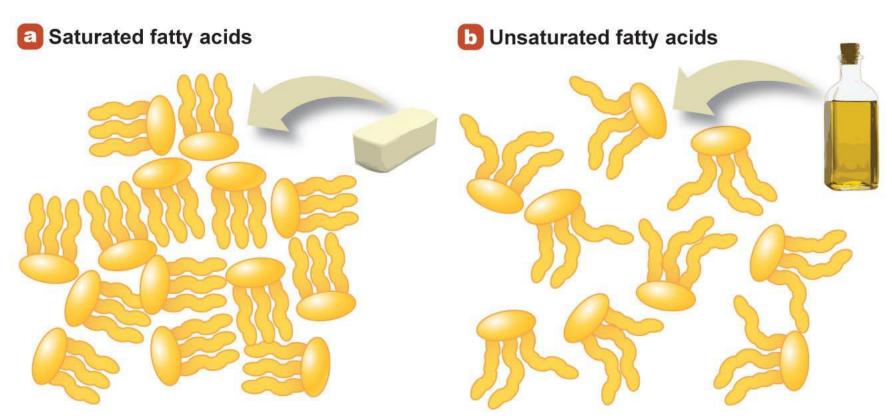

What are fatty acids? FATTY ACIDS ARE ALIPHATIC CARBOXYLIC ACIDS

$$CH_3 - (CH_2)_{16} - COO^{-1}$$

Lipid Classes


- simple: FA's esterified with glycerol
- compound: same as simple, but with other compounds also attached
 - a) **phospholipids:** fats containing phosphoric acid and nitrogen (lecithin)
 - b) glycolipids: FA's compounded with CHO, but no N
- derived lipids: substances from the above derived by hydrolysis
- sterols: large molecular wt. alcohols found in nature and combined w/FA's (e.g., cholesterol)

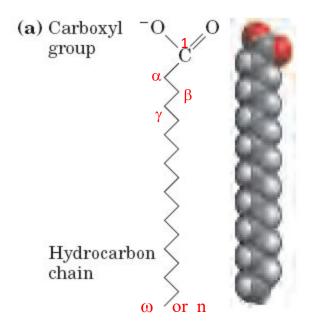
CLASSIFICATION



uncharged, so termed as neutral lipids.

Fatty acids that occur in natural fats are usually straight-chain derivatives containing an **even number of carbon atoms**.

Saturated and Unsaturated Fatty Acids Help Shape Foods



© 2010 Pearson Education, Inc.

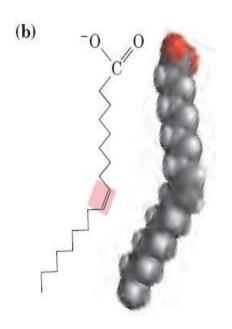
Saturated Fatty acids

Carbon atoms are numbered from the carboxyl carbon (carbon No. 1).

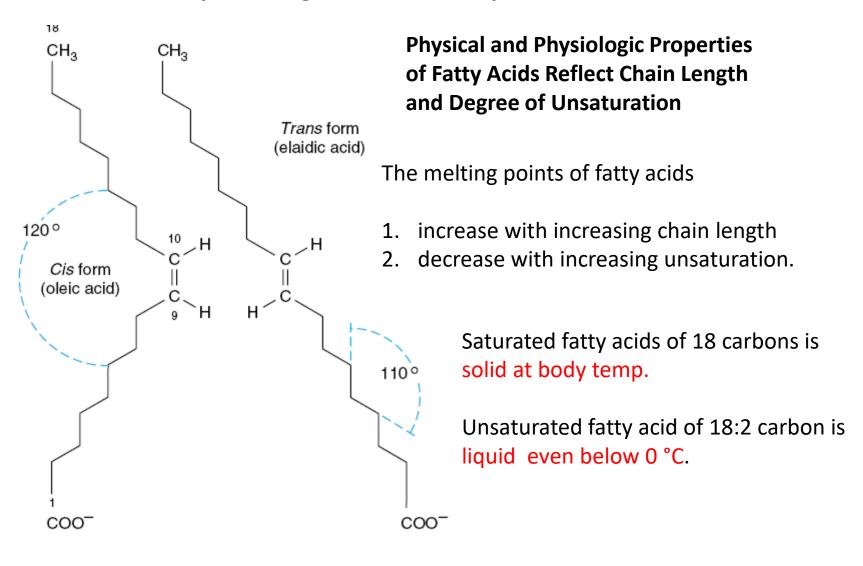
The carbon atoms adjacent to the carboxyl carbon (Nos. 2, 3, and 4) are named as the α , β , and γ carbons, respectively, and the terminal methyl carbon is known as the ω or n-carbon.

Common Name	Number of C Atoms	
Acetic	2	Major end product of carbohy- drate fermentation by rumen organisms ¹
Propionic	3	An end product of carbohydrate fermentation by rumen organisms ¹
Butyric	4	In certain fats in small amounts (especially butter). An end product of carbohydrate fermentation by rumen organisms ¹
Valeric	5	
Caproic	6	
Lauric	12	Spermaceti, cinnamon, palm ker- nel, coconut oils, laurels, butter
Myristic	14	Nutmeg, palm kernel, coconut oils, myrtles, butter
Palmitic	16	Common in all animal and plant fats
Stearic	18	

Unsaturated Fatty acids


Various conventions are used

 Δ for indicating the number and position of the double bonds eg, Δ^9 indicates a double bond between carbons 9 and 10 of the fatty acid;


 $\omega 9$ indicates a double bond on the ninth carbon counting from the ω - carbon.

There are two forms of double bonds

- a. cis form
- b. trans form

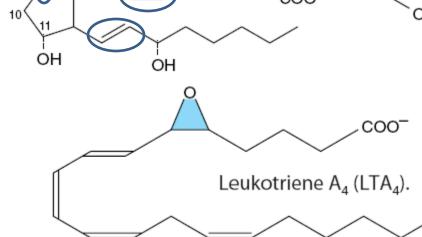
Most Naturally Occurring Unsaturated Fatty Acids Have cis Double Bonds

Unsaturated fatty acids

Monounsaturated FA

containing one double bond

Polyunsaturated FA


containing more than one double bond

Eicosanoids:

eicosa- polyenoic fatty acids (20C)

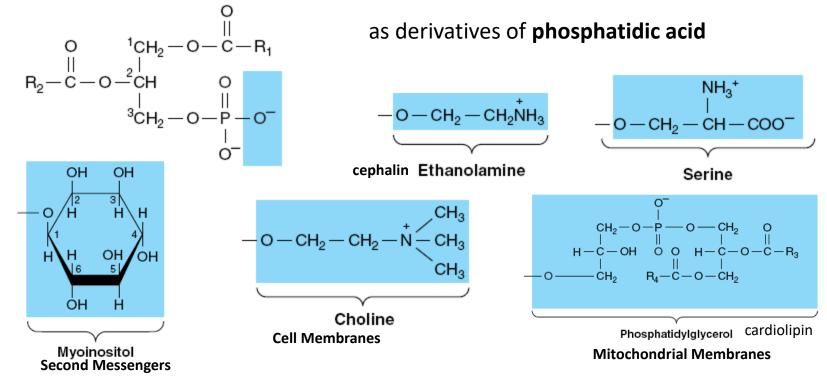
- 1. (prostaglandins (PGs), prostacyclins (PGIs), thromboxanes (TXs)
- 2. leukotrienes (LTs), and
- 3. lipoxins (LXs).

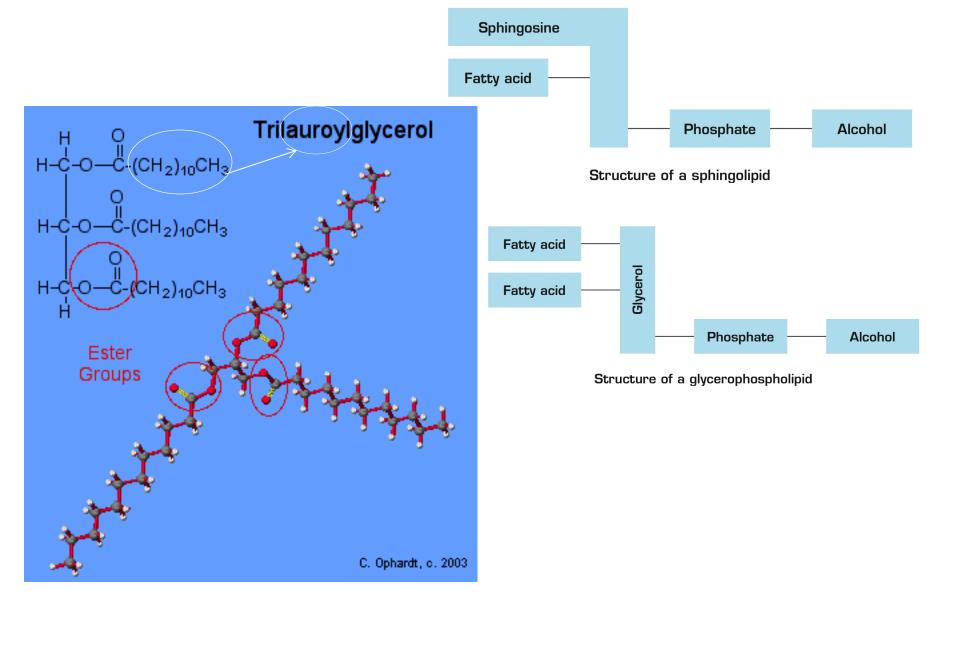
Prostaglandin E_2 (PGE₂).

Thromboxane
$$A_2$$
 (TXA₂).

the "E" type of prostaglandin (as in PGE2) has a keto group in position 9, whereas the "F" type has a hydroxyl group in this position.

The prostaglandins


TRIACYLGLYCEROLS (TRIGLYCERIDES) ARE THE MAIN STORAGE FORMS OF FATTY ACIDS

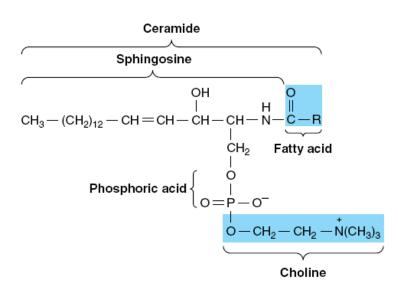

Triacylglycerol

Carbons 1 & 3 of Glycerol Are Not Identical

O ${}^{1}\text{CH}_{2}-\text{O}-\overset{||}{\text{C}}-\text{R}_{1}$ Enzymes readily distinguish between them Eg, glycerol is always phosphorylated on sn-3 by ${}^{3}\text{CH}_{2}-\text{O}-\overset{||}{\text{C}}-\text{R}_{2}$ glycerol ${}^{3}\text{CH}_{2}-\text{O}-\overset{||}{\text{C}}-\text{R}_{2}$ glycerol ${}^{3}\text{Chosphate}$. glycerol kinase to give glycerol 3-phosphate and not

PHOSPHOLIPIDS ARE THE MAIN LIPID CONSTITUENTS OF MEMBRANES

Lysophospholipids Are Intermediates in the Metabolism of Phosphoglycerols


$$\begin{array}{c} ^{1}\text{CH}_{2} - \text{O} - \overset{\text{O}}{\text{C}} - \text{R} \\ \text{HO} \stackrel{-2}{\overset{\text{C}}{\text{CH}}} & \overset{\text{O}}{\overset{\text{O}}{\text{C}}} \\ ^{1}{\overset{\text{O}}{\text{C}}} + \overset{\text{O}}{\overset{\text{O}}{\text{C}}} - \overset{\text{O}}{\text{C}} - \overset{\text{C}}{\text{C}} + \overset{\text{C}}{\overset{\text{C}}{\text{C}}} + \overset{\text{C}}{\overset{\text{C}}} + \overset{\text{C}}{\overset{\text{C}}{\text{C}}} + \overset{\text{C}}{\overset{\text{C}}{\text{C}}} + \overset{\text{C}}{\overset{\text{C}}} + \overset{\text{C}}{\overset{\text{C}}{\text{C}}} + \overset{\text{C}}{\overset{\text{C}}} + \overset{\text{C}}{\overset{\text{C}}{\text{C}}} + \overset{C}{\overset{C}}{\overset{C}} + \overset{C}{\overset{C}}{\overset{C}} + \overset{C}{\overset{C}}{\overset{C}} + \overset{C}{\overset{C}}{\overset{C}} + \overset{C}{\overset{C}}{\overset{C}} + \overset{C}{\overset{C}}{\overset{C}} + \overset{C}{\overset{C}} + \overset{C}{\overset{C}}{\overset{C}} + \overset{C}{\overset{C}}{\overset{C}} + \overset{C}{\overset{C}} + \overset{C}}{\overset{C}} + \overset{C}{\overset{C}} + \overset{C}} + \overset{C}{\overset{C}} + \overset{C}{\overset{C}} + \overset{C}{\overset{C}} + \overset{C}} + \overset{C}{\overset{C}} + \overset{C}{\overset{C}} + \overset{C}{\overset{C}$$

Plasmalogens Occur in Brain & Muscle

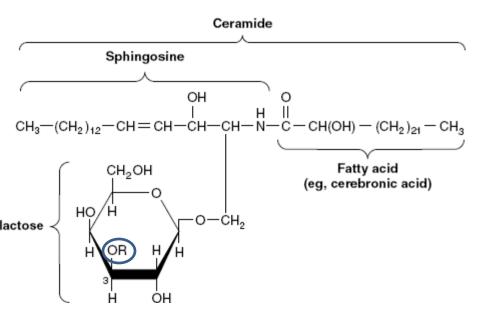
O
$${}^{1}CH_{2}-O-CH=CH-R_{1}$$
 $R_{2}-C-O-CH$

O
 ${}^{3}CH_{2}-O-P-O-CH_{2}-CH_{2}-NH_{3}+O-CH_{2}-NH_{3}+O-CH_{2}-NH_{3$

Sphingomyelins Are Found in the Nervous System

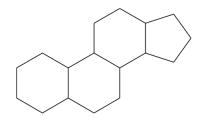
GLYCOLIPIDS

Glycolipids are widely distributed in every tissue of the body, in the outer leaflet of the plasma membrane,


The major glycolipids found in animal tissues are glycosphingolipids.

contain ceramide and one or more sugars.

Galactosylceramide

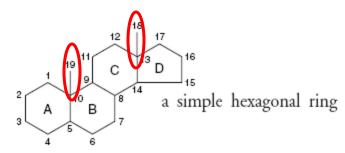

sphingolipid of brain and other nervous tissue, found in relatively low amounts elsewhere.

It contains a number of characteristic C₂₄ fatty acids, eg cerebronic acid.

galactocerebroside, R = HSulfogalactosylceramide $R = SO_4^{2-}$

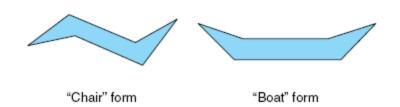
STEROIDS PLAY PHYSIOLOGICALLY IMPORTANT ROLES

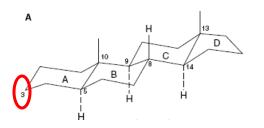
Ring structure of a steroid

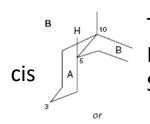

steroids have a similar cyclic nucleus (2 cyclic molecules) resembling

- 1. phenanthrene (rings A, B, and C) to which a
- 2. cyclopentane ring (D) is attached.

Cholesterol


Precursor of a large number of equally important steroids that include


- 1. the bile acids,
- 2. adrenocortical hormones,
- 3. sex hormones,
- 4. D vitamins,
- cardiac glycosides,
- 6. Sitosterols of the plant kingdom.



compound has one or more OH (hydroxyl) groups and no carbonyl or carboxyl groups, it is a **sterol**, and the name terminates in **-ol**.

six-carbon rings of the steroid nucleus is capable of existing in the three-dimensional conformation either of a "chair" or a "boat"

The junction between the A and B rings can be *cis or trans in naturally occurring* Steroids

Cholesterol Is a Significant Constituent of Many Tissues

Cholesterol is widely distributed in all cells of the body but particularly in nervous tissue. It is a major constituent of the plasma membrane and of plasma lipoproteins. It is often found as **cholesteryl ester**, where the hydroxyl group on position 3 is esterified with a long-chain fatty acid. It occurs in animals but not in plants.

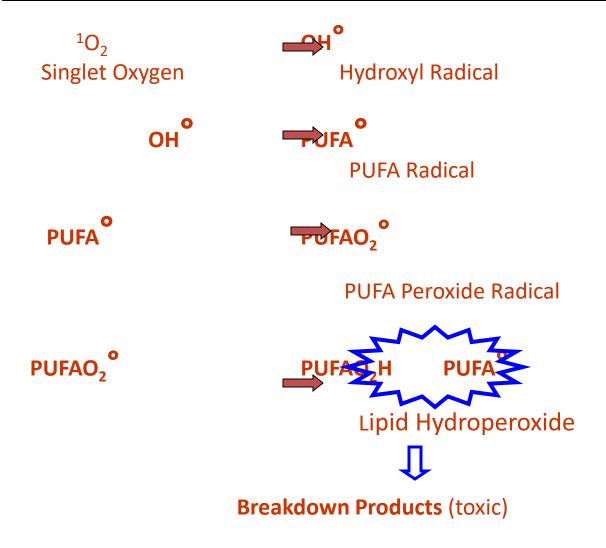
Ergosterol Is a Precursor of Vitamin D

Ergosterol occurs in plants and yeast and is important as a precursor of vitamin D

Polyprenoids

They include **ubiquinone** a member of the respiratory chain in mitochondria,

Longchain alcohol **dolichol** which takes part in glycoprotein synthesis by transferring carbohydrate residues to asparagine residues of the polypeptide.


Isoprene unit.

HO

K

Plant-derived isoprenoid compounds include rubber, camphor, the fat-soluble vitamins A, D, E, and K, and β -carotene (provitamin A).

E

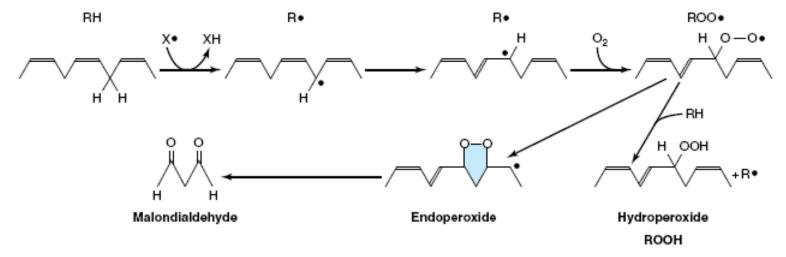
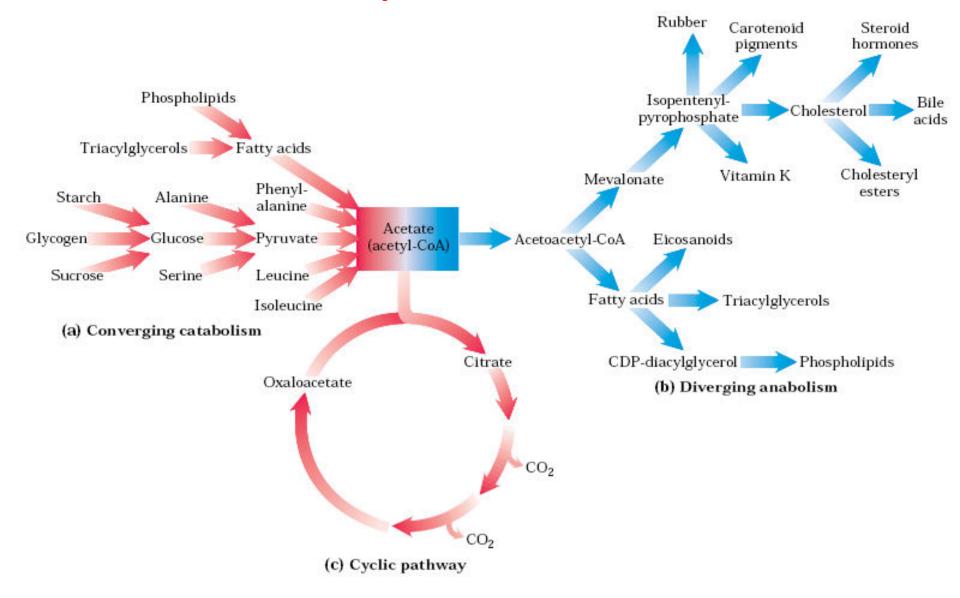
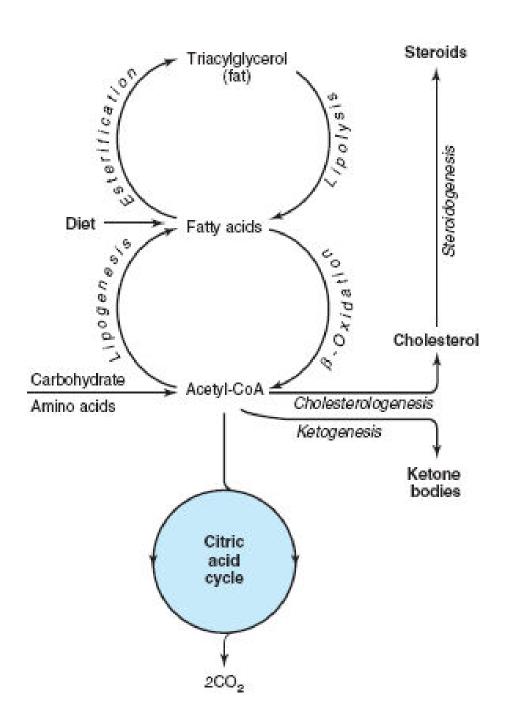




Figure 14–21. Lipid peroxidation. The reaction is initiated by an existing free radical (X*), by light, or by metal ions. Malondialdehyde is only formed by fatty acids with three or more double bonds and is used as a measure of lipid peroxidation together with ethane from the terminal two carbons of ω3 fatty acids and pentane from the terminal five carbons of ω6 fatty acids.

Overview of fatty acid metabolism

