Introduction to Biochemistry

Prof. Narkunaraja Shanmugam

Dept. Of Biomedical Science School of Basic Medical Sciences Bharathidasan University

Bio Chemistry

- Bio= life
- Chemistry = how things interact
- Biochemistry= the branch of science in which you study the chemical and physical processes that occur in an organism.

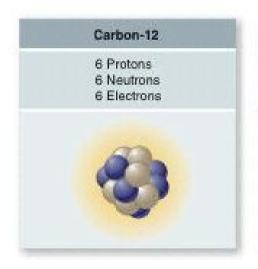
Matter...

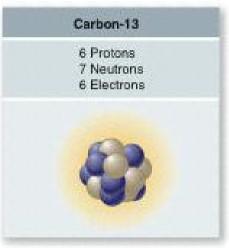
- □ All matter, whether living or nonliving, is made of the same type building blocks called **atoms** □ An **atom** is the smallest basic unit of matter
 □ All atoms have the same basic structure, samples of three
- ☐ All atoms have the same basic structure, composed of <u>three</u> smaller particles
 - 1. Proton a positively charged particle in an atom's nucleus
 - 2. Neutron a neutral (no charge) particle which has about the same mass as a proton and is also in the nucleus
 - **3. Electron** a negatively charged particle found outside the nucleus. Electrons are much, much smaller than proton and neutrons

Elements...

- 1. Different types of atoms are called **elements**, which cannot be broken down by ordinary chemical means
- 2. Which element an atom is depends on the number of protons in the atom's nucleus
 - 1. For example... all hydrogen atoms have 1 proton and all oxygen atoms have 8 protons
- 3. Only about 25 different elements are found in organisms
 - 1. However, atoms of different elements can "link" or bond together to form compounds

Compounds...


□Atoms form compounds in two ways


- 1. Ionic bonds consists of ions and forms through the electrical force between oppositely charged ions
 - An ion is an atom that has lost or gained electrons
 - Cation an ion that loses electrons so becomes positively charged
 - Anion an ion that gains electrons so becomes negatively charged
- 2. Covalent bonds forms when atoms share one or more pairs of electrons
 - A molecule consists of two or more atoms held together by covalent bonds

Why elements bond the way they do...

- All atoms want 8 electrons in their outer most energy level (shell) This is called the octet rule.
- That is why they do what they do
 - Ionic bonds gain or lose electrons
 - Covalent share electrons
- How do we identify each type
 - Ionic compound metal + non-metal
 - Covalent compound non-metal + non-metal

Atoms

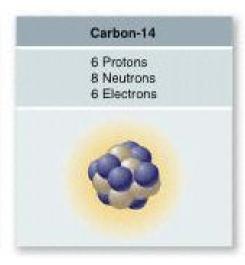
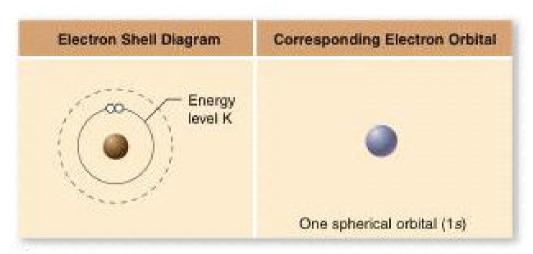
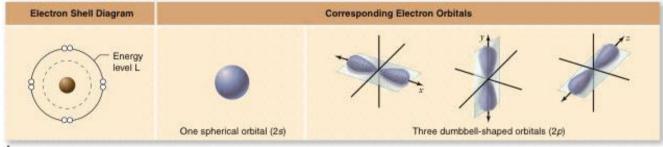
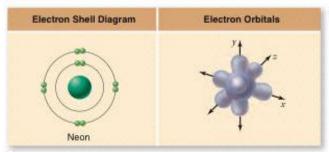




figure 2.3


THE THREE MOST
ABUNDANT ISOTOPES
OF CARBON. Isotopes
of a particular element
have different numbers
of neutrons.

Electron orbitals

b.

figure 2.4

ELECTRON ORBITALS. a. The lowest energy level or electron shell—the one nearest the nucleus—is level K. It is occupied by a single s orbital, referred to as 1s. b. The next highest energy level, L, is occupied by four orbitals: one s orbital (referred to as the 2s orbital) and three p orbitals (each referred to as a 2p orbital). Each orbital holds two paired electrons with opposite spin. Thus, the K level is populated by two electrons, and the L level is populated by a total of eight electrons. c. The neon atom shown has the L and K energy levels completely filled with electrons and is thus unreactive.

Energy Levels

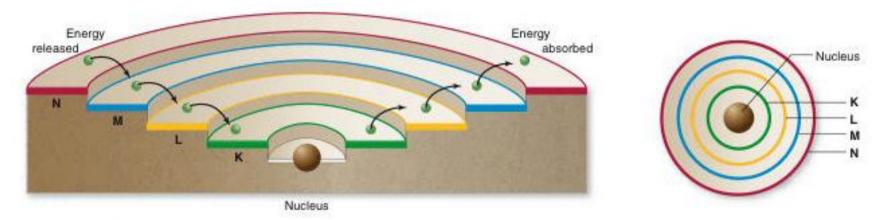
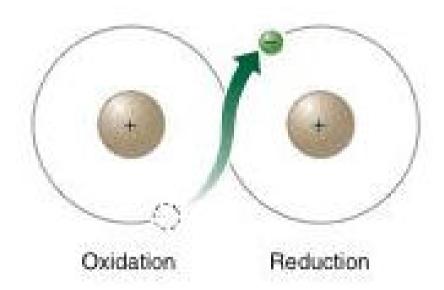


figure 2.5


ATOMIC ENERGY LEVELS. Electrons have energy of position. When an atom absorbs energy, an electron moves to a higher energy level, farther from the nucleus. When an electron falls to lower energy levels, closer to the nucleus, energy is released. The first two energy levels are the same as shown in the previous figure.

Redox Reactions

Redox can involve loss or gain of an electron or a hydrogen (contains an electron) $C_6H_{12}O_6 + 6O_2 ---> 6CO_2 + 6H_2O$

Carbon loses hydrogen therefore is oxidized.

Oxygen gains hydrogen therefore is reduced.

Electronegativities

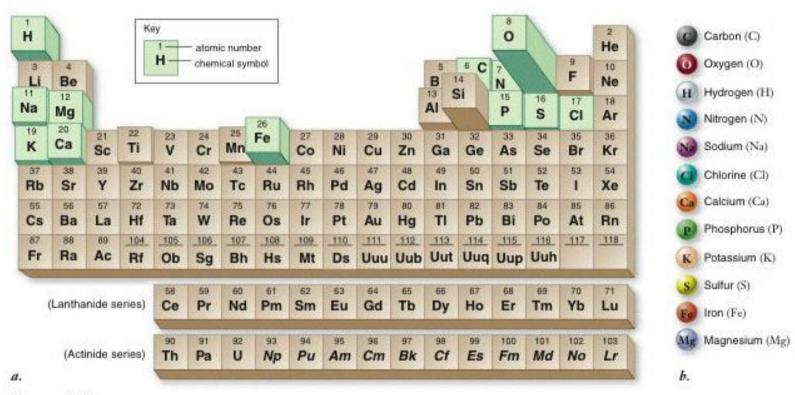


figure 2.6

PERIODIC TABLE OF THE ELEMENTS. a. In this representation, the frequency of elements that occur in the Earth's crust is indicated by the height of the block. Elements shaded in green are found in living systems in more than trace amounts. b. Common elements found in living systems are shown in colors that will be used throughout the text.

Biochemistry

• There are Coveral different types of bonds that are important Name Basis of interaction Strength Strong Of Strong

Attraction of opposite

Sharing of H atom

Forcing of hydrophobic

portions of molecules

together in presence of polar substances

Weak attractions between

atoms due to oppositely

polarized electron clouds

charges

Covalent=

lonic = sw

Polar Cov

The realit

etween.

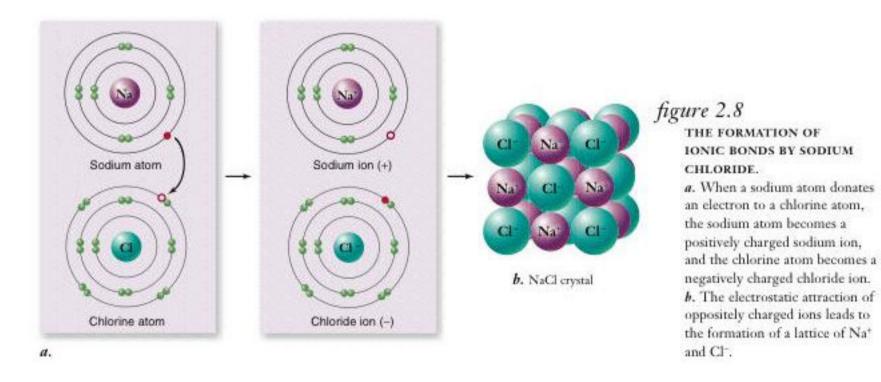
Weak

re both ionic

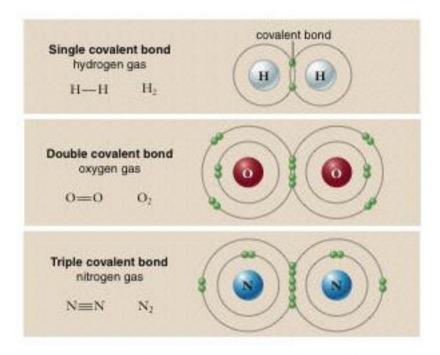
and covalent characteristics - polar.

Ionic bond

Hydrogen bond


Hydrophobic

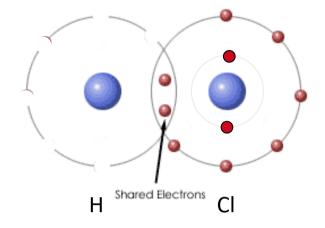
van der Waals


attraction

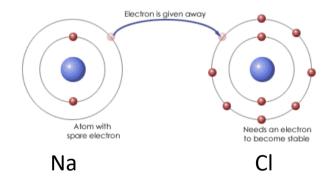
interaction

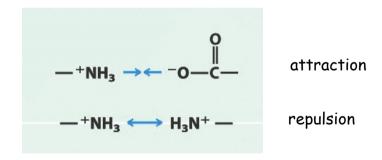
Ionic Bonds

Covalent Bonds

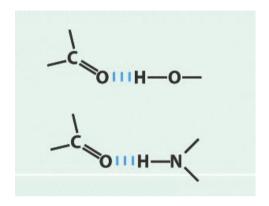

Covalent bonds are represented in chemical formulas as lines connecting atomic symbols, where each line between two bonded atoms represents the sharing of one pair of electrons. The structural formulas of hydrogen gas and oxygen gas are H-H and O=O, respectively, and their molecular formulas are H_2 and O_2 . The structural formula for N_2 is N=N.

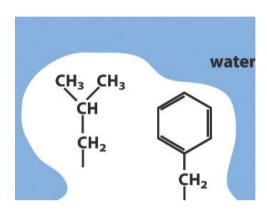
Electronegativity


Electronegativity, symbol χ , is the chemical property that describes the ability of an atom (or, more rarely, a functional group) to attract electrons (or electron density) towards itself in a covalent bond.


TABLE 2.2	Relative Electronegativities of Some Important Atoms
Atom	Electronegativity
О	3.5
N	3.0
c	2.5
Н	2.1

Covalent and Ionic Bonds


Covalent (100-400 kcal/mol)



Ionic (100-300 kcal/mol)

Hydrogen and hydrophobic interactions

H2 (12-16 kcal/mol) attraction between a hydrogen atom in one molecule and a atom of high electronegativity in another molecule. It is an intermolecular force, not an intramolecular force.

Hydrophobic Interactions

Van der Waals

TABLE 2-4

van der Waals Radii and Covalent (Single-Bond) Radii of Some Elements

Element	van der Waals radius (nm)	Covalent radius for single bond (nm)
Н	0.11	0.030
0	0.15	0.066
N	0.15	0.070
C	0.17	0.077
S	0.18	0.104
P	0.19	0.110
1	0.21	0.133

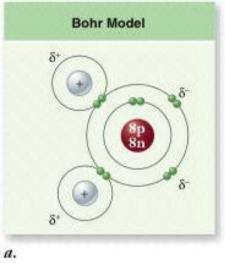
Sources: For van der Waals radii, Chauvin, R. (1992) Explicit periodic trend of van der Waals radii. *J. Phys. Chem.* 96, 9194–9197. For covalent radii, Pauling, L. (1960) *Nature of the Chemical Bond*, 3rd edn, Cornell University Press, Ithaca, NY.

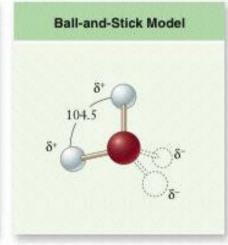
Note: van der Waals radii describe the space-filling dimensions of atoms. When two atoms are joined covalently, the atomic radii at the point of bonding are less than the van der Waals radii, because the joined atoms are pulled together by the shared electron pair. The distance between nuclei in a van der Waals interaction or a covalent bond is about equal to the sum of the van der Waals or covalent radii, respectively, for the two atoms. Thus the length of a carbon-carbon single bond is about 0.077 nm + 0.077 nm = 0.154 nm.

Table 2-4
Lehninger Principles of Biochemistry, Fifth Edition

© 2008 W.H. Freeman and Company

Nonpolar molecules are hydrophobic (means "water fearing"). They do not dissolve in water.

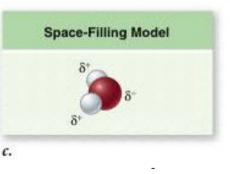

Polar and ionic molecules have positive and negative charges and are therefore attracted to water molecules because water molecules are also polar. They are said to be hydrophilic because they interact with (dissolve in) water by forming hydrogen bonds.


Bond Strength

- While it takes more energy to break ionic bonds in a dry environment, in living things molecules are in aqueous environments.
- Therefore in Biology: Covalent bonds are stronger than Ionic bonds, and H-bonds are weaker than both.
- Keep in mind that in large numbers H-bonds can be strong.

Polar Covalent Bonds

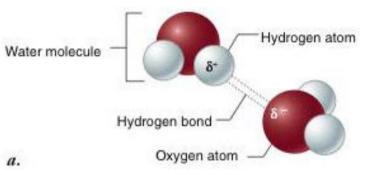
• Because (of 3.44 ar difference given tim found clo



Itivity value f 2.1, the at any kely to be

Oxygen is

• While the atom, we



ef. either δ^{-}

Hydrogen Bonds

Because I electrone somethin a polarizati form a w another I

• Which el b. form H-b figure 2.11

Hydrogen atom
Hydrogen bond
δ

An organic molecule

anded to

the H to rge of

ill tend to

STRUCTURE OF A HYDROGEN BOND. *a.* Hydrogen bond between two water molecules. *b.* Hydrogen bond between an organic molecule (*n*-butanol) and water. H in *n*-butanol forms a hydrogen bond with oxygen in water. This kind of hydrogen bond is possible any time H is bound to a more electronegative atom (see table 2.2).

Oxygen atom

 A Si bon Hydrogen bond whe δ+ Н that stre Н

o 4 Hand cules the net

Water Phase Changes

- When going from a liquid to a gas, H-bonds have to be broken- it requires an increase in energy.
- When Water evaporates is takes energy from the environment, which in turn cools off the environment. (sweating cools us)
- When water freezes, it is releasing energy to the environment.

Solutions

Ions Disso

Covalent n
 each other
 separate in
 sugar in w
 surrounde

nds with and (dissolving ule gets molecules)

figure 2.14

why salt dissolves in water, individual Na⁺ and Cl⁻ ions break away from the salt lattice and become surrounded by water molecules. Water molecules orient around Cl⁻ ions so that their partial positive poles face toward the negative Cl⁻ ion; water molecules surrounding Na⁺ ions orient in the opposite way, with their partial negative poles facing the positive Na⁺ ion. Surrounded by hydration shells, Na⁺ and Cl⁻ ions never reenter the salt lattice.