Acid-Base Balance

Prof. Narkunaraja Shanmugam

Dept. Of Biomedical Science School of Basic Medical Sciences Bharathidasan University

Introduction

- Acid-base balance is one of the most important of the body's homeostatic mechanisms
- Acid-base balance refers to regulation of hydrogen ion concentration in body fluids
- Precise regulation of pH at the cellular level is necessary for survival
- Slight pH changes have dramatic effects on cellular metabolism

Acids and Bases and Buffers

- Acids
 - Release H⁺ into solution
- Bases
 - Remove H⁺ from solution
- Acids and bases
 - Grouped as strong or weak

- Buffers: Resist changes in pH
 - When H⁺ added, buffer removes it
 - When H⁺ removed, buffer replaces it
- Types of buffer systems
 - Carbonic acid/bicarbonate
 - Protein
 - Phosphate

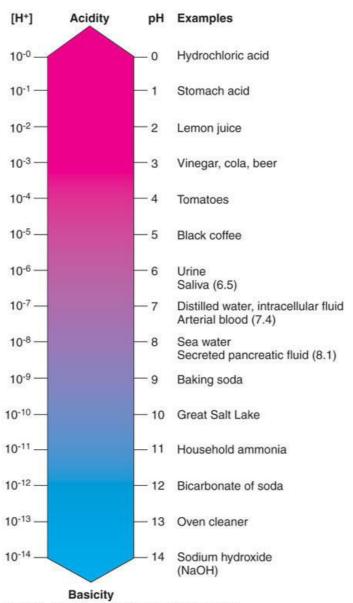
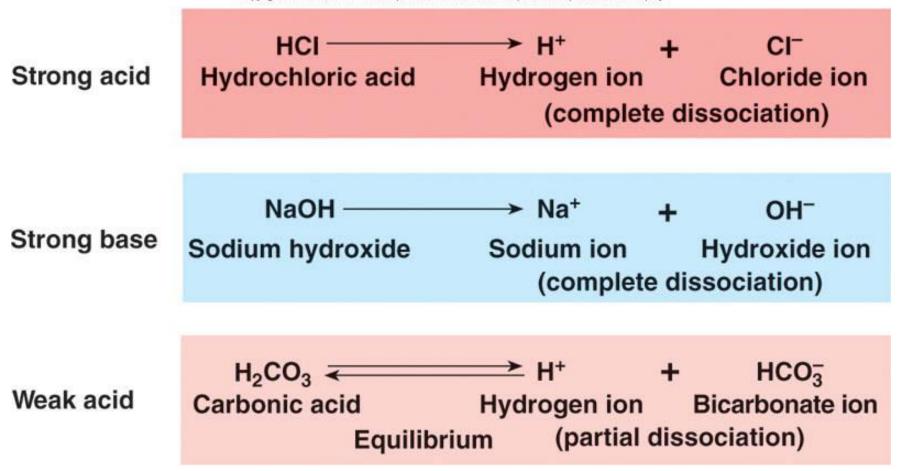



Fig. 30-1. The pH range. See text for discussion.

Mosby items and derived items © 2010, 2007, 2003 by Mosby, Inc., an affiliate of Elsevier Inc.

Comparison of Strong and Weak Acids

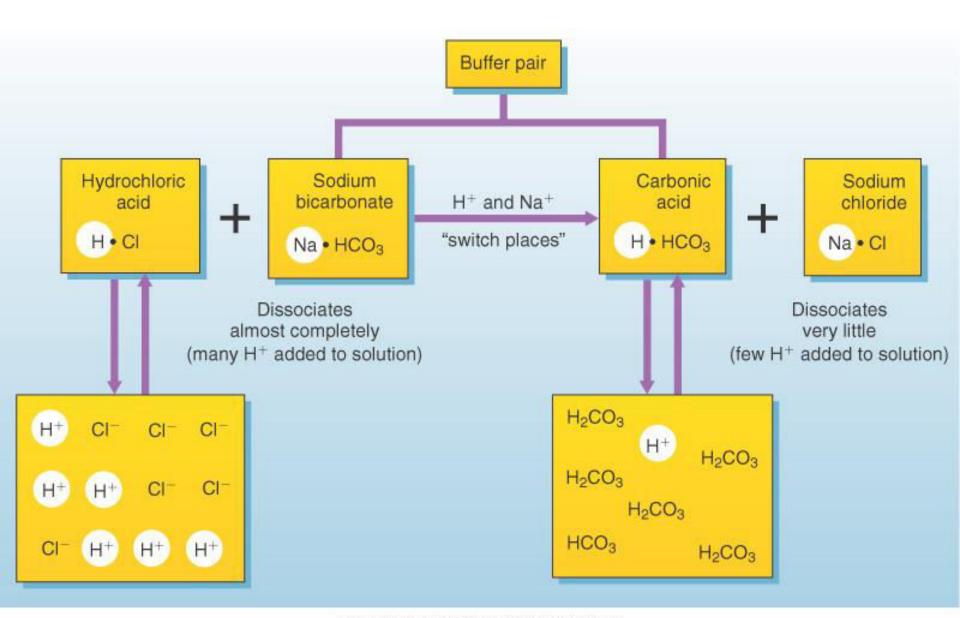
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

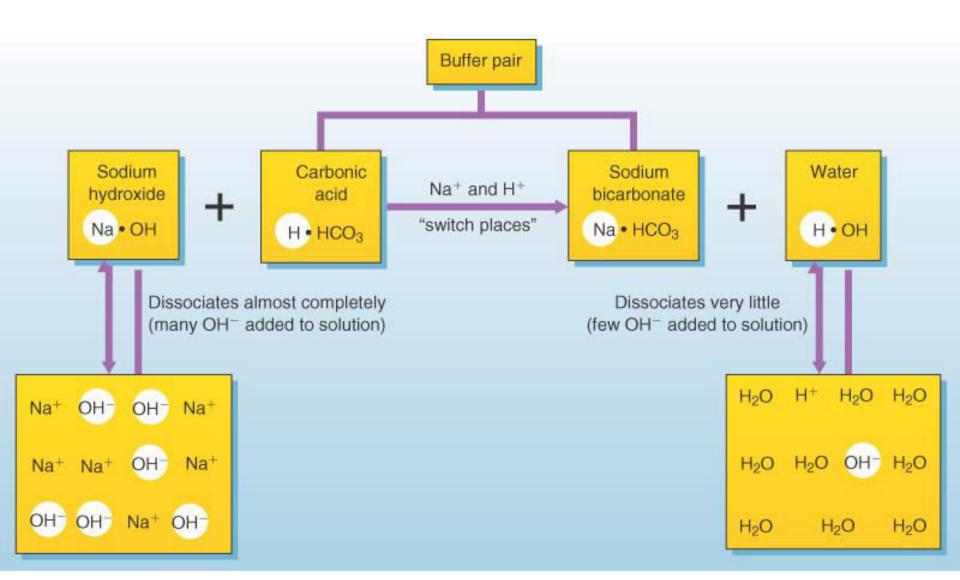
MECHANISMS THAT CONTROL pH OF BODY FLUIDS (cont.)

- Sources of pH-influencing elements
 - H+ ions are continually entering the body fluids from 5 major sources:
 - 1. Carbonic acid: formed by aerobic glucose metabolism
 - 2. Lactic acid: formed by anaerobic glucose metabolism
 - 3. Sulfuric acid: formed by oxidation of sulfur-containing amino acids
 - 4. Phosphoric acid: formed in the breakdown of phosphoproteins and ribonucleotides
 - 5. Acidic ketone bodies: formed in the breakdown of fats
 - Acetone
 - Acetoacetic acid
 - Beta-hydroxybutyric acid
 - Acid-forming minerals: chloride, sulfur, and phosphorus
 - Base forming minerals: potassium, calcium, sodium and magnesium

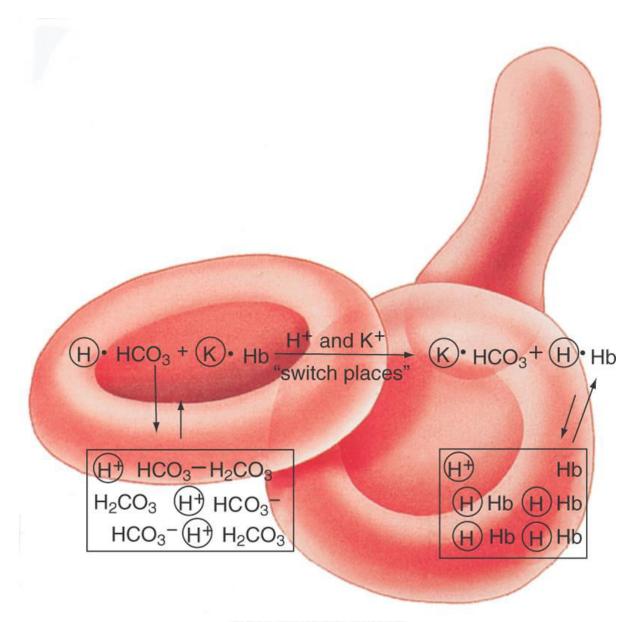
Regulation of Acid/Base Balance

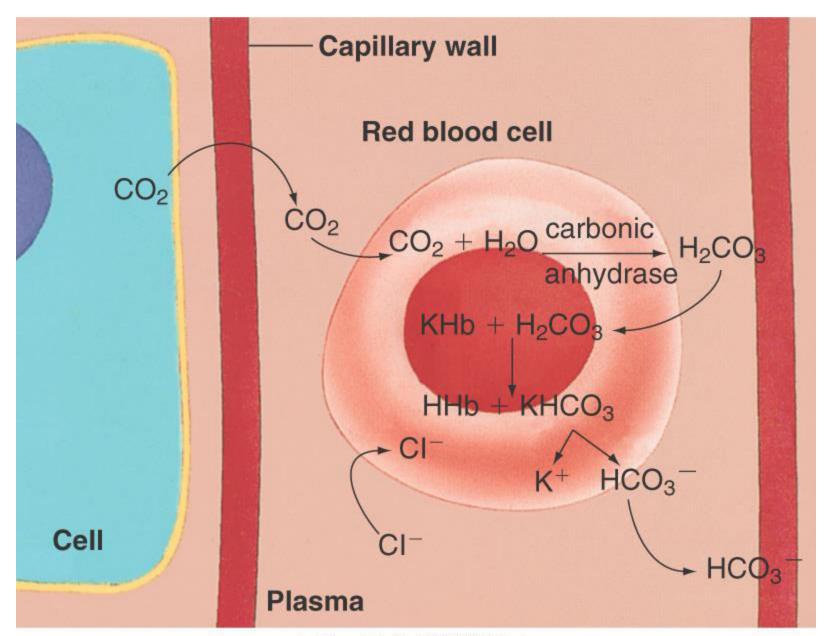
- 1. Buffers: if pH rises, buffers bind H+; if pH falls, buffers release H+
 - Protein buffer: Intracellular and plasma proteins absorb H⁺. Provide ¾
 of buffering in body. E.g., hemoglobin.
 - Bicarbonate buffering system: Important in plasma
 - Phosphate buffer system: important as an intracellular buffer
- 2. Respiratory center: if pH rises, respiratory rate decreases; if pH falls, respiratory rate increases
- 3. Kidneys: if pH rises, distal tubule decreases H⁺ secretion into the urine and decreases HCO₃⁻ absorption into the blood (more H₂CO₃ will dissociate into H⁺ and HCO₃⁻); if pH falls, distal tubule increases H⁺ secretion into the urine and increases HCO₃⁻ absorption into the blood


MECHANISMS THAT CONTROL pH OF BODY FLUIDS (cont.)


- Types of pH control mechanisms
 - Chemical: rapid-action buffers
 - Bicarbonate buffer system
 - Phosphate buffer system
 - Protein buffer system
 - Physiological: delayed-action buffers
 - Respiratory response
 - Renal response
 - Summary of pH homeostatic mechanisms
 - Buffers
 - Respiration
 - Kidney excretion of acids and bases
 - extremely effective, normally maintain blood pH within very narrow range of 7.36 to 7.40

BUFFER MECHANISMS FOR CONTROLLING pH OF BODY FLUIDS


Buffers


- Substances that prevent a marked change in pH of a solution when an acid or base is added to it
- Consist of a weak acid (or its acid salt) and a basic salt of that acid
- Buffer pairs present in body fluids: mainly carbonic acid, proteins, hemoglobin, acid phosphate, and sodium and potassium salts of these weak acids

Mosby items and derived items @ 2007, 2003 by Mosby, Inc.

BUFFER MECHANISMS FOR CONTROLLING pH OF BODY FLUIDS (cont.)

- Buffer actions that prevent marked changes in pH of body fluids
 - The chloride shift lets carbonic acid be buffered in the red blood cell and then carried as bicarbonate in the plasma (Figure 30-6)
 - Nonvolatile acids, such as hydrochloric acid, lactic acid, and ketone bodies, are buffered mainly by sodium bicarbonate
 - Volatile acids, chiefly carbonic acid, are buffered mainly by potassium salts of hemoglobin and oxyhemoglobin
 - pH balance depends on a base-bicarbonate to carbonic acid buffer pair ratio of 20:1

Respiratory Mechanism of pH Control

Explanation of mechanism

- Amount of blood carbon dioxide directly relates to amount of carbonic acid and therefore to concentration of H⁺
- With increased respirations, less carbon dioxide remains in blood, hence less carbonic acid and fewer H⁺; with decreased respirations, more carbon dioxide remains in blood, hence more carbonic acid and more H⁺
- Carbon dioxide levels and pH affect respiratory centers
 - Hypoventilation increases blood carbon dioxide levels
 - Hyperventilation decreases blood carbon dioxide levels

$$HCO_3^- + H^+ \leftrightarrow H_2CO_3 \leftrightarrow CO_2 + H_2O_3$$

RESPIRATORY MECHANISMS OF pH CONTROL (cont.)

Principles that relate respirations to pH value

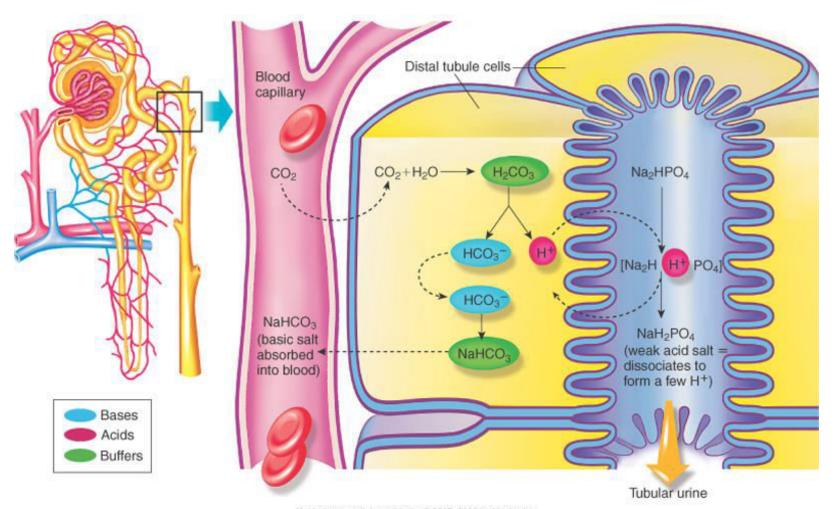
```
- Acidosis \rightarrow Hyperventilation
```

```
Increases elimination of CO₂

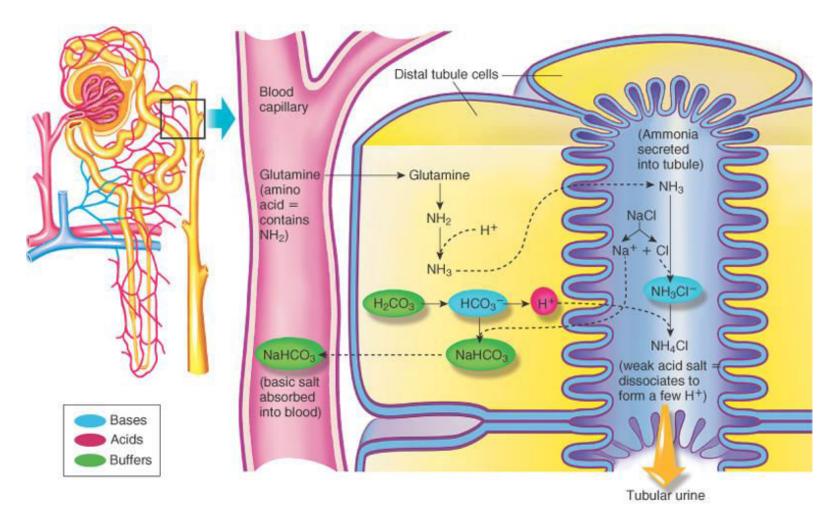
Increases blood CO₂

Decreases blood H₂CO₃

Decreases blood H⁺ (increases blood pH)


Tends to correct acidosis (restore normal pH)
```

RESPIRATORY MECHANISMS of pH CONTROL (cont.)


- Principles that relate respirations to pH value (cont.)
 - Prolonged hyperventilation, by decreasing blood H⁺ excessively, may produce alkalosis
 - Alkalosis causes hypoventilation, which tends to correct alkalosis by increasing blood CO₂ and therefore blood H₂CO₃ and H⁺
 - Prolonged hypoventilation, by eliminating too little CO₂,
 causes an increase in blood H₂CO₃ and consequently in blood H⁺, thereby possibly producing acidosis

General principles of Renal Regulation of Acid-Base Balance

- Secretion of H⁺ into filtrate and reabsorption of HCO₃⁻ into ECF cause extracellular pH to increase
- Rate of H⁺ secretion increases as body fluid pH decreases

Mosby items and derived items @ 2007, 2003 by Mosby, Inc.

Mosby items and derived items @ 2007, 2003 by Mosby, Inc.

URINARY MECHANISMS THAT CONTROL pH (cont.)

- Mechanisms that control urine pH
 - Secretion of H⁺ into urine: when blood CO₂, H₂CO₃, and H⁺ increase above normal, distal tubules secrete more H⁺ into urine to displace basic ion (mainly sodium) from a urine salt and then reabsorb sodium into blood in exchange for the H⁺ excreted
 - Secretion of NH₃: when blood H⁺ concentration increases, distal tubules secrete more NH₃, which combines with the H⁺ of urine to form ammonium ion, which displaces a basic ion (mainly sodium) from a salt; the basic ion is then reabsorbed back into blood in exchange for the ammonium ion excreted

Acidosis and Alkalosis

- Acidosis: pH body fluids below 7.35
 - Respiratory: Caused by inadequate ventilation- reduced elimination of CO₂, asthma, damage to respiratory center in brain, emphysema.
 - Metabolic: Results from all conditions other than respiratory that decrease pH- diarrhea, vomiting, ingesting overdose of aspirin, untreated diabetes mellitus, anaerobic respiration
- Alkalosis: pH body fluids above 7.45
 - Respiratory: Caused by hyperventilation, high altitude (reduced partial pressure of O₂
 - Metabolic: Results from all conditions other than respiratory that increase pH- severe vomiting, too much aldosterone, ingestion of substances like bicarbonate of soda