Cytokines

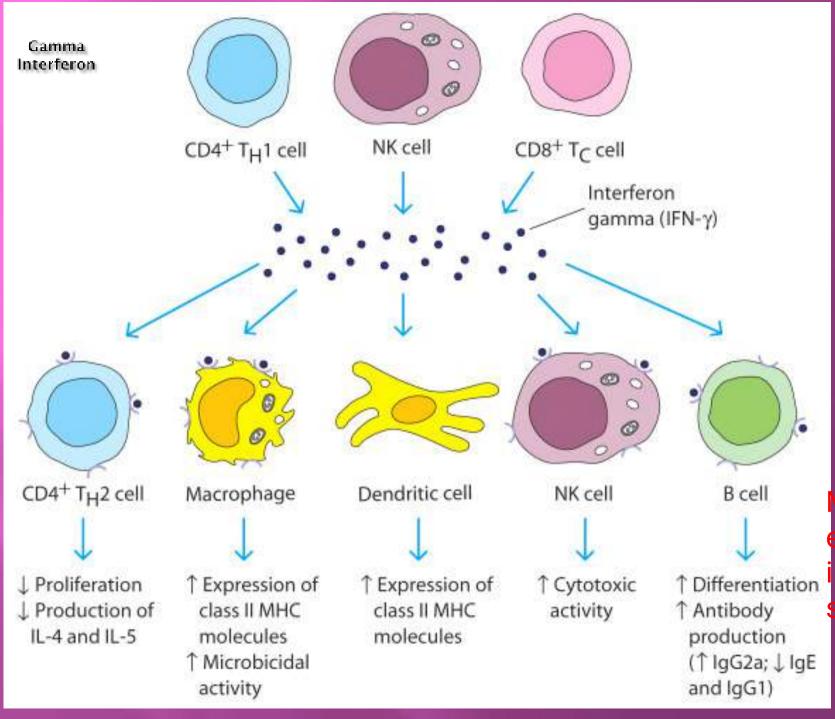
Dr. Shanmugaapriya
Assistant Professor
Department of Biomedical Science
Bharathidasan University
Trichy-24

WHAT IS CYTOKINE?

- Secreted polypeptide or low molecular weight regulatory protein or glycoproteins involved in cell-to-cell signaling.
- Assist in regulating development of immune effector cells
- act on many cells involved in immune and inflammatory response
- Some possess direct effector functions of their own Cytotoxic, inflammatory, anti-inflammatory,
 - Immunostimulation (proliferation), chemotactic, hematopoiesis

Cytokines: main functions

- Hematopoiesis (ex. CSFs, colony stimulating factors).
- Inflammatory reaction (ex. IL1, TNF).
- Chemotaxis (ex. IL8, MIP1- macrophage inflammatory protein 1, BLC B-lymphocyte chemoatractant).
- Immunostimulation (ex. IL12, IFNγ).
- Suppression (ex. IL10).
- Angiogenesis (ex. VEGFs vacsular endothelial growth factor).
- Embryogenesis (ex. TGF-β, LT lymphotoxin).


Inducing stimulus How cytokine mediate their biological eff Cytokine Cytokine-producing cell gene Cytokine Receptor Signal Gene Target cell activation **Biological effects** Figure 12-1a Kuby IMMUNOLOGY, Sixth Edition © 2007 W.H. Freeman and Company

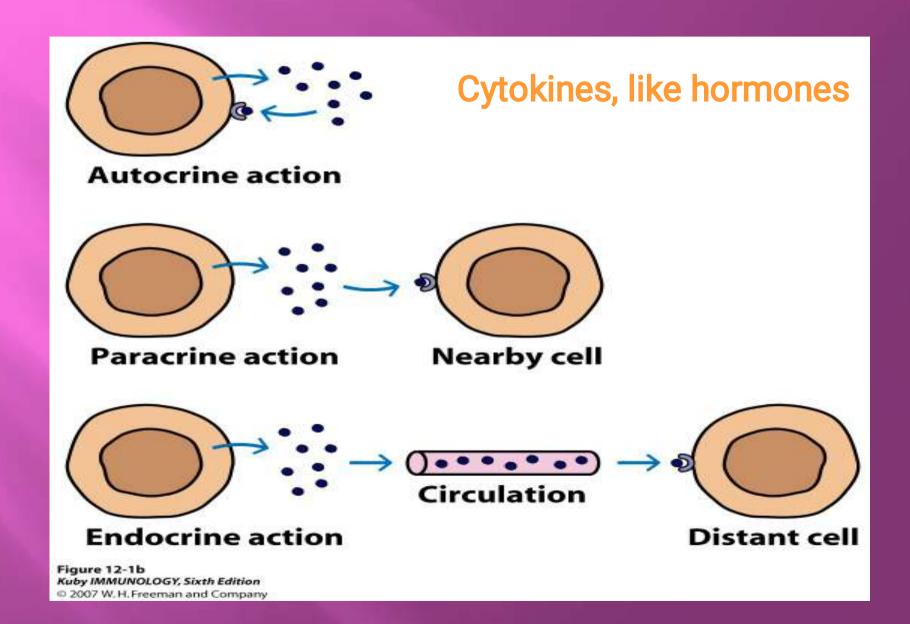
Acts through specific cellular receptors

- Cytokines bind to specific receptors
- Trigger signal transduction pathways that alter gene expression in target cells
- Exhibit pleiotropy, redundancy, synergy, antagonism, cascade induction

Target Cell Effect Properties of Cytokines Activation **Proliferation** Differentiation **PLEIOTROPY** B cell **Proliferation Thymocyte** Activated T_H cells **Proliferation** Mast cell

Figure 12-2a part 1
Kuby IMMUNOLOGY, Sixth Edition
© 2007 W.H. Freeman and Company

Pleiotropic activity of Interferon Gamma.


Immunology, 5th Edition, Figure 15-15, p. 355

Multiple effects induced by single cytokine

Properties of Cytokines Target Cell **Effect** REDUNDANCY Proliferation Activated T_H cells B cell SYNERGY IL-4 Induces class switch to IgE IL-5 Activated T_H cells B cell ANTAGONISM Blocks class switch to IgE induced by IL-4 IFN-y Activated T_H cells B cell

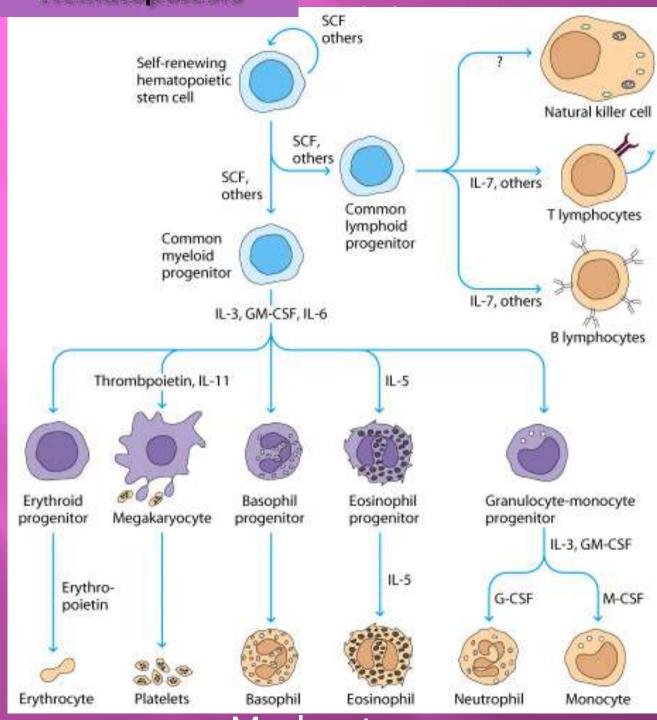
Figure 12-2a part 2
Kuby IMMUNOLOGY, Sixth Edition
© 2007 W.H. Freeman and Company

Acts in paracrine or autocrine fashion through specific cellular receptors

Can be produced by cells of any tissue and act on many cells involved in immune and inflammatory response.

Cytokine nomenclature

- Lymphokines produced by activated T lymphocytes direct the immune system response by signaling between its cells
- □ Interleukins presumed targets are principally leukocytes
- □ **Chemokines** specific class of cytokines. Mediates chemoattraction (**chemotaxis**) between cells, stimulate leukocyte movement and regulate the migration of leukocytes from the blood to tissues.
- Monokines derived primarily from mononuclear cells such as macrophages


Functions of Cytokines

Cytokines in Hematopoiesis

Cytokines in Innate and Adaptive immunity

Hematopoiesis

Stem Cell Factor from Bone Marrow Stromal

Lymphocytes

Hematopoietic Cytokines and Hematopoiesis:

Immunology, 5th Edition, Figure 12-16,

p. 297

-Myelocytes-----

Hematopoietic growth factor	Sites of production	Main functions
Erythropoietin	Kidney, liver	Erythrocyte production
G-CSF	Endothelial cells, fibroblasts, macrophages	Neutrophil production
Thrombopoietin	Liver, kidney	Platelet production
M-CSF	Fibroblasts, endothelial cells, macrophages	Macrophage and osteoclast production
Stem Cell Production	Bone marrow stromal cells, constitutively	Stem cell, progenitor cells survival/division; mast cell differentiation
Flt-3 ligand	Fibroblasts, endothelial cells	Early progenitor cell expansion; pre-B cells
GM-CSF Myelocyte Production	T cells (T _H 1 and T _H 2), macrophages, mast cells	Macrophage, granulocyte production; dendritic cell maturation and activation
IL-3	T cells (T _H 1 and T _H 2), macrophages	Stem cells and myeloid progenitor cell growth; mast cells
IL-5	Activated helper, T cells—T _H 2 response only	Eosinophil production; murine B-cell growth
IL-6	Activated T cells, monocytes, fibroblasts, endothelial cells	Progenitor-cell stimulation; platelet production immunoglobulin production in B cells
IL-7 Lymphocyte Production	Bone marrow and lymphoid stromal cells	T-cell survival
IL-11	Bone marrow stromal cells and IL-1-stimulated fibroblasts	Growth factor for megakaryocytes

Table 12-5
Kuby IMMUNOLOGY, Sixth Edition

© 2007 W.H. Freeman and Company

Encyclopedia of Life Sciences: Haematopoietic growth factors, Nature Publishing Group.

Cytokine [†]	Secreted by	Targets and effects
	SOME CYTOKINES O	F INNATE IMMUNITY
Interleukin 1 (IL-1)	Monocytes, macrophages, endothelial cells	Vasculature (inflammation); hypothalamus (fever); liver (induction of acute phase proteins)
Tumor necrosis factor-α (TNF-α)	Macrophages	Vasculature (inflammation); liver (induction of acute phase proteins); loss of muscle, body fat (cachexia); induction of death in many cell types; neutrophil activation
Interleukin 12 (IL-12)	Macrophages, dendritic cells	NK cells; influences adaptive immunity (promotes T _H 1 subset)
Interleukin 6 (IL-6)	Macrophages, endothelial cells	Liver (induces acute phase proteins); influences adaptive immunity (proliferation and antibody secretion of B cell lineage
Interferon α (IFN-α) (this is a family of molecules)	Macrophages	Induces an antiviral state in most nucleated cells; increases MHC class I expression; activates NK cells
Interferon β (IFN-β)	Fibroblasts	Induces an antiviral state in most nucleated cells; increases MHC class I expression; activates NK cells
	SOME CYTOKINES OF	ADAPTIVE IMMUNITY
Interleukin 2 (IL-2)	T cells	T-cell proliferation; can promote AICD. NK cell activation and proliferation; B-cell proliferation
Interleukin 4 (IL-4)	T _H 2 cells, mast cells	Promotes T _H 2 differentiation; isotype switch to IgE
Interleukin 5 (IL-5)	T _H 2 cells	Eosinophil activation and generation
Transforming growth factor β (TGF-β)	T cells, macrophages, other cell types	Inhibits T-cell proliferation and effector functions; inhibits B-cell proliferation; promotes isotype switch to IgA; inhibits macrophages
Interferon γ (IFN-γ)	T _H 1 cells, CD8+ cells, NK cells	Activates macrophages; increases expression MHC class I and class II molecules; increases antigen presentation

^{*}Many cytokines play roles in more than one functional category.

Table 12-1 Kuby IMMUNOLOGY, Sixth Edition © 2007 W.H. Freeman and Company

[†]Only the major cell types providing cytokines for the indicated activity are listed; other cell types may also have the capacity to synthesize the given cytokine.

^{*}Also note that activated cells generally secrete greater amounts of cytokine than unactivated cells.

Cytokine Receptors

- Cytokine receptors fall into families
 - Immunoglobulin superfamily receptors
 - Class I cytokine receptor family (hematopoietin)
 - Class II cytokine receptor family (interferon)
 - TNF receptor family
 - Chemokine receptor family

Human Disease due to Over-production of Cytokines

Bacterial Septic Shock:

- **Bacterial Cell-wall Endotoxins**
- Macrophage Overproduction of IL-1 and TNF-alpha
- Example organisms potentially producing endotoxins:
- Neisseria meningitidis, E coli, Pseudomonas aeruginosa, Enterobacter aerogenes, Klebsiella pneumoniae

Bacterial Toxic Shock

- Polyclonal activation of T-cells by Super-Antigens
- Over-production of IL-1, TNF, other cytokines
- Example organisms producing super-antigens:
- Staphylococcus aureus, Streptococcus pyrogenes

See pages 291 and 292, Kuby, Edition

Other Sources of Cytokines used in Host Response to Pathogens:

e.g. Mediators in Type I Immediate Hypersensitivity

Mediator	Effects
	PRIMARY
Histamine, heparin	Increased vascular permeability; smooth muscle contraction
Serotonin (rodents)	Increased vascular permeability; smooth muscle contraction
Eosinophil chemotactic factor (ECF-A)	Eosinophil chemotaxis
Neutrophil chemotactic factor (NCF-A)	Neutrophil chemotaxis
Proteases (tryptase, chymase)	Bronchial mucus secretion; degradation of blood vessel basement membrane; generation of complement split products
	SECONDARY
Platelet-activating factor	Platelet aggregation and degranulation; contraction of pulmonary smooth muscles
Leukotrienes (slow reactive substance of anaphylaxis, SRS-A)	Increased vascular permeability; contraction of pulmonary smooth muscles
Prostaglandins	Vasodilation; contraction of pulmonary smooth muscles; platelet aggregation
Bradykinin	Increased vascular permeability; smooth muscle contraction
Cytokines	
IL-1 and TNF-α	Systemic anaphylaxis; increased expression of CAMs on venular endothelial cells
IL-4 and IL-13	Increased IgE production
IL-3, IL-5, IL-6, IL-10, TGF-β, and GM-CSF	Various effects (see Table 12-1)

Table 15-3
Kuby IMMUNOLOGY, Sixth Edition
© 2007 W.H.Freeman and Company

Cytokines in Therapy of Diseases

Cytokines have potent activities at low concentrations in controlling responses of host cells to normal and pathological events & thus we use them in therapy

Cytokine Therapies in the Clinic

Agent	Nature of agent	Clinical application
Enbrel	Chimeric TNF-receptor/lgG constant region	Rheumatoid arthritis
Remicade or Humira	Monoclonal antibody against TNF-α receptor	Rheumatoid arthritis Crohn's disease
Roferon	Interferon α-2a*	Hepatitis B Hairy-cell leukemia Kaposi's sarcoma
Intron A	Interferon α-2b	Hepatitis C [†] Melanoma
Betaseron	Interferon β–1b	Multiple sclerosis
Avonex	Interferon β–1a	Multiple sclerosis
Actimmune	Interferon γ–1β	Chronic granulomatous disease (CGD) Osteopetrosis
Neupogen	G-CSF (hematopoietic cytokine)	Stimulates production of neutrophils Reduction of infection in cancer patients treated with chemotherapy, AIDS patients
Leukine	GM-CSF (hematopoietic cytokine)	Stimulates production of myeloid cells after bone marrow transplantation
Neumega or Neulasta	Interleukin-11 (IL-11), a hematopoietic cytokine	Stimulates production of platelets
Epogen	Erythopoietin (hematopoietic cytokine)	Stimulates red-blood-cell production

^{*}Interferon α -2a is also licensed for veterinary use to combat feline leukemia.

[†]Normally used in combination with an antiviral drug (ribavirin) for hepatitis C treatment.