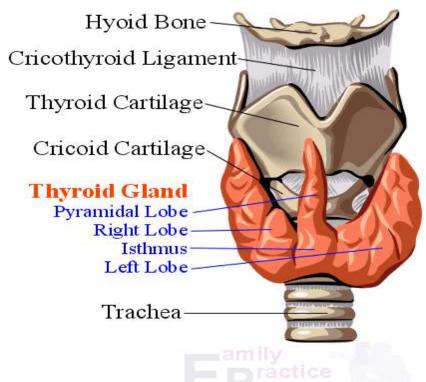

Course: Endocrinology

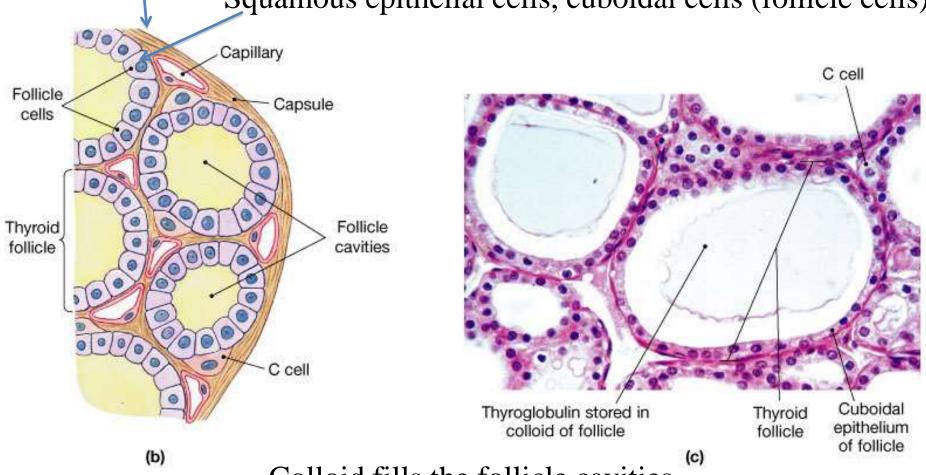
Thyroid Hormones


Dr. S.D. Saraswathy
Assistant Professor
Department of Biomedical Science
Bharathidasan University, Tiruchirappalli

The Thyroid Gland

- ■Normal gland weighs about 20g
- ■Derived from embryonic endoderm.
- Consists of 2 lobes joined by a thin isthmus

Adapted from Corel Draw 9

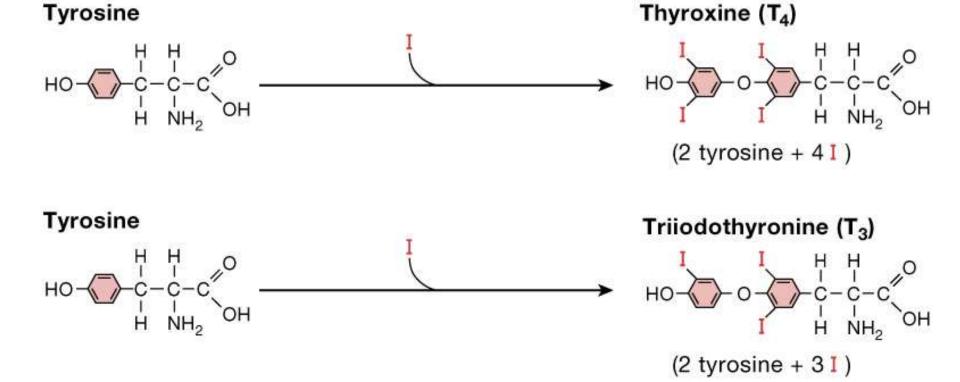

Histology of the Thyroid tissue

- The thyroid gland composed of closely packed sacs called follicles, composed of epithelial follicular cells and colloid.
 - Follicular cells: secrete thyroxine (T_4) and triiodothyronine (T_3) .
 - Colloid, a jellylike substance inside a follicle that contain thyroglobulin.
- Parafollicular cells located outside the follicles, which secrete calcitonin.
- The thyroid gland is capable of storing many weeks worth of thyroid hormone (coupled to thyroglobulin).

The Thyroid Gland – Histology

Gland is composed of hollow spheres, called colloid follicles.

Squamous epithelial cells, cuboidal cells (follicle cells)

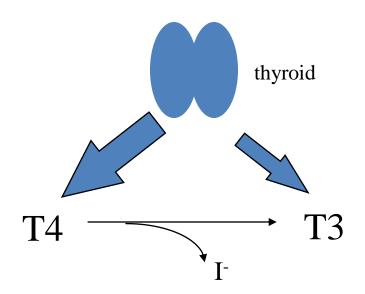


Colloid fills the follicle cavities

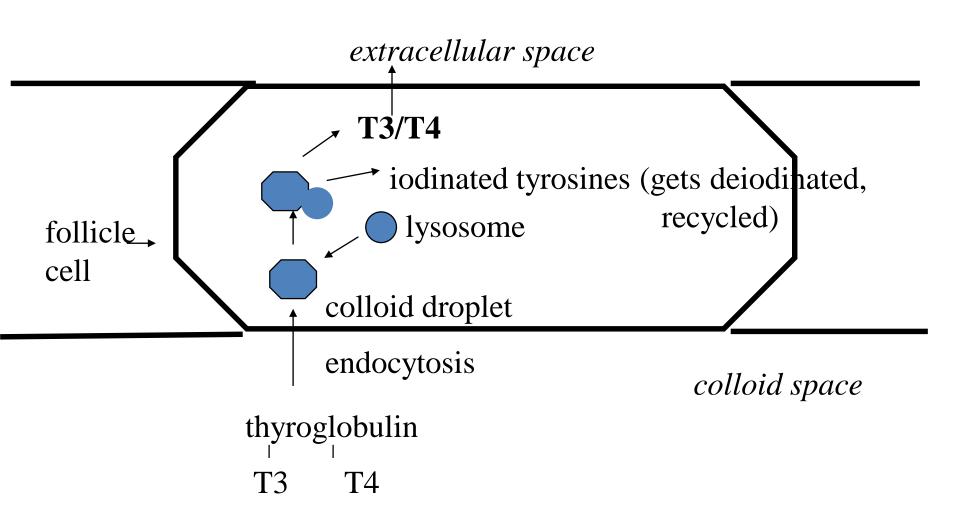
Follicle cells produce thyroglobulin ----→ TH

Thyroid Hormones - Structure

- There are two biologically active thyroid hormones:
 - tetraiodothyronine (T₄; usually called thyroxine)
 - triiodothyronine (T_3)
- Derived from modification of tyrosine.



Thyroglobulin – Storage function


- Thyroglobulin is a very large Glycoprotein (10% carbohydrate).
- M. Wt. 660,000
- 2 identical subunits of 330,000 MW.
- 132 tyrosines and 25 to 30 iodinated.
- Thyroid hormones are attached to thyroglobulin and stored extracellularly in the follicle.
- The hormones are released after thyroglobulin is endocytosed and hydrolysed.
- Hydrolysis accomplished by lysosomal proteases inside the follicular cells.

Secretion of T_4 and T_3

- The thyroid secretes about 80 μ g of T_4 , but only 5 μ g of T_3 per day.
- However, T_3 has a much greater biological activity (about 10 times) than T_4 .
- An additional 25 μ g/day of T_3 is produced by peripheral monodeiodination of T_4 .

Utilization of Thyroglobulin to Secrete Thyroid Hormones

The role of Iodine in Thyroid Hormone Production

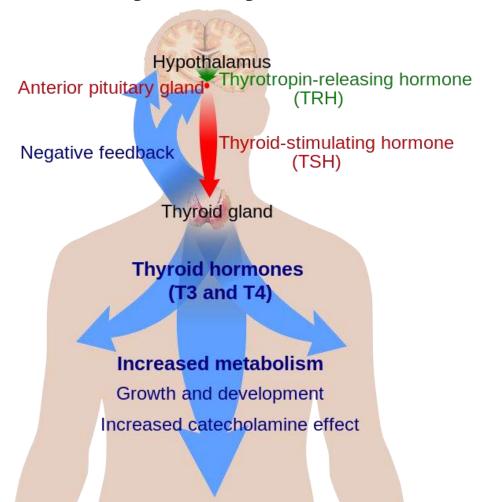
- Thyroid hormones are unique biological molecules in that they incorporate iodine in their structure.
- Thus, adequate iodine intake (diet, water) is required for normal thyroid hormone production.
- Major sources of iodine:
 - iodized salt
 - iodated bread
 - dairy products
 - shellfish
- Minimum requirement: 75 μg/day which is about 10g of iodized salt.

Transport of Thyroid Hormones: T_3 and T_4 (Iodothyronines)

- All are amino acid derivatives (tyrosine), not very soluble in water but are lipid-soluble (hydrophobic molecules).
- Thus, they are found in the circulation associated with binding proteins:
 - Specific protein carrier called Thyroid hormone-binding globulin (TBG)
 - 70% of T_3 and T_4
 - Pre-albumin (Transthyretin)
 - 10% of T_4 and very little of T_3
 - Albumin
 - 25% of T₃ and 15% of T₄
- Less than 1% of thyroid hormone is found free in the circulation.
- Only free and albumin-bound thyroid hormone is biologically available to tissues.

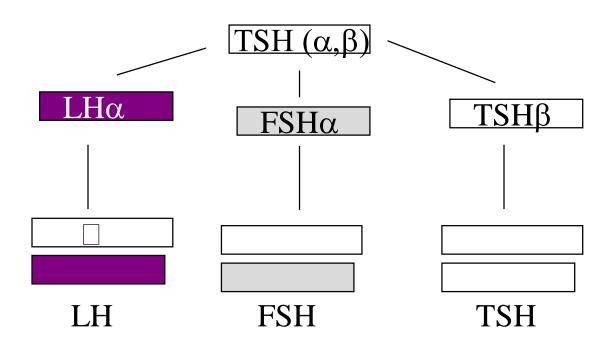
Regulation of Thyroid Hormone Levels

- Thyroid hormone synthesis and secretion is regulated by two main mechanisms:
 - an "autoregulation" mechanism, which reflects the available levels of iodine.
 - regulation by the hypothalamus and anterior pituitary

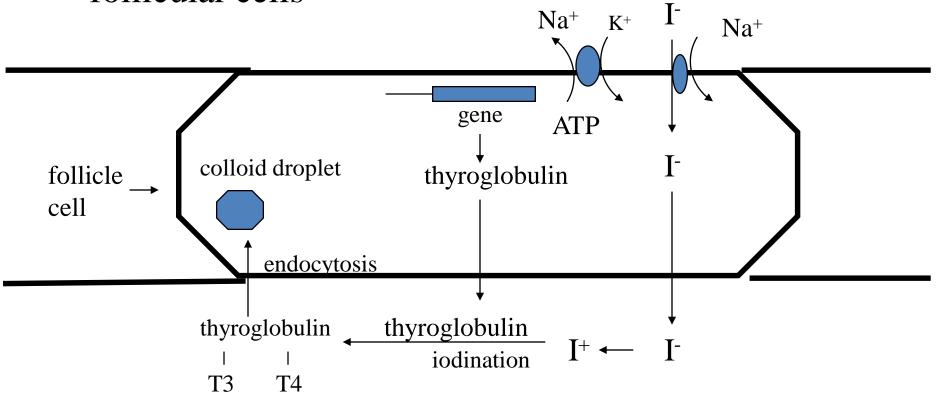

Autoregulation of Thyroid Hormone Production

- The rate of iodine uptake and incorporation into thyroglobulin is influenced by the amount of iodide available:
 - low iodide levels increase iodine transport into follicular cells
 - high iodide levels decrease iodine transport into follicular cells
- Thus, there is negative feedback regulation of iodide transport by iodide.

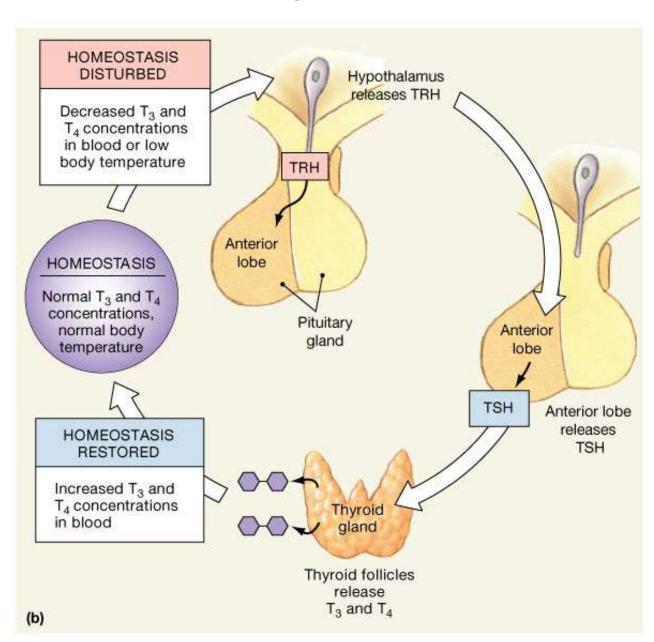
Regulation of TSH Release from the Anterior Pituitary


- TSH release is influenced by hypothalamic TRH, and by thyroid hormones themselves.
- Thyroid hormones exert negative feedback on TSH release at the level of the anterior pituitary.
 - inhibition of TSH synthesis
 - decrease in pituitary receptors for TRH

Thyroid system


Neuroendocrine Regulation of Thyroid Hormones: Role of TSH

- Thyroid-stimulating hormone (TSH, also known as **thyrotropin**) is produced by **thyrotroph cells** of the anterior pituitary which regulates the endocrine function of the thyroid gland.
- TSH is a glycoprotein hormone composed of two subunits (alpha and beta):
 - TSHα subunit (common to hCG, LH, FSH)
 - TSHβ subunit is unique to TSH, which gives specificity of receptor binding and biological activity


Action of TSH on the Thyroid

- TSH acts on follicular cells of the thyroid.
 - increases iodide transport into follicular cells
 - increases production and iodination of thyroglobulin
 - increases endocytosis of colloid from lumen into follicular cells

Regulation of T₄ and T₃ Secretion

All aspects of hormone synthesis are regulated by extra thyroid mechanism (TRH-TSH).

Actions of Thyroid Hormones

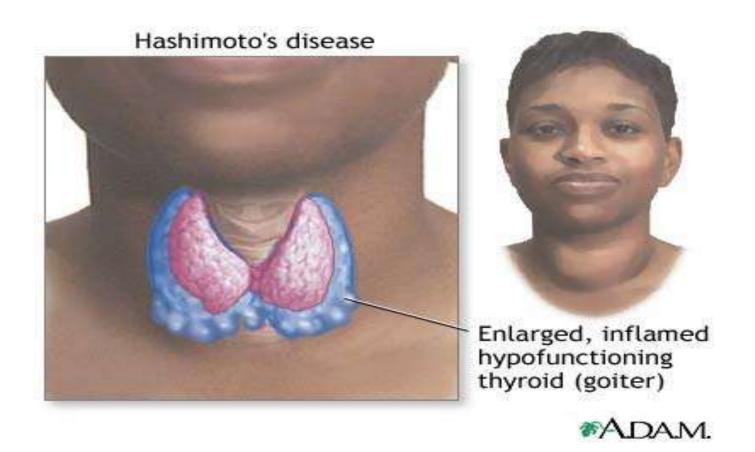
- Thyroid hormone stimulates basal metabolic rate.
- Maintain metabolic homeostasis by regulating:
 - Intermediary metabolism
 - Body weight
 - Oxygen requirements
 - Body temperature
- Thyroid hormones are essential for normal growth of tissues, including the nervous system.
- Also, positive controller of growth, reproduction and differentiation.
- Lack of thyroid hormone during development results in short stature and mental deficits (cretinism).

Effects of THs in Growth and Tissue Development

- THs are essential for linear growth & pubertal development
- Increase growth and maturation of bone
- Increase tooth development and eruption
- Mobilizes calcium from bone
- Increase growth and maturation of epidermis, hair follicles and nails
- Increase rate and force of skeletal muscle contraction
- Inhibits synthesis and increases degradation of mucopolysaccharides in subcutaneous tissue

Effects on the Nervous System

- Critical for normal CNS neuronal development
- Enhances wakefulness and alertness
- Enhances memory and learning capacity
- Required for normal emotional tone
- Increase speed and amplitude of peripheral nerve reflexes.


Effects on the Reproductive System

- Required for normal follicular development and ovulation in the female
- Required for the normal maintenance of pregnancy
- Required for normal spermatogenesis in the male

Dysfunction of Thyroid Gland

- 1. Decreased thyroid hormone levels Hypothyroidism. short stature (acquired), developmental delay (congenital).
 - Low T4
 - Possibly Low T3 too.
 - Raised TSH (unless pituitary problem!)
- 2. Increased thyroid hormone levels Hyperthyroidism Agitation, irritability, & weight loss.
 - High T4 +/- High T3
 - Low (suppressed) TSH

Autoimmune hypothyroidism

Hashimoto's Disease

- Most common cause of hypothyroidism
- Autoimmune lymphocytic thyroiditis.
- Antithyroid antibodies:
 - Thyroglobulin Ab
 - Microsomal Ab
 - TSH-R Ab (block)
- Females > Males
- Runs in Families.

Clinical features of Acquired hypothyroidism

- Weight gain
- Goitre
- Short sature
- Fatigue
- Constipation
- Dry skin
- Cold Intolerance
- Hoarseness
- Sinus Bradycardia

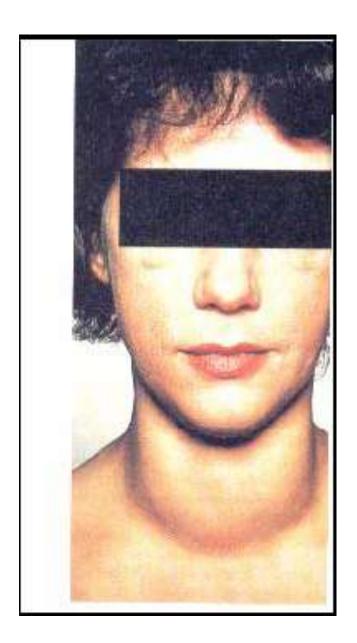
Diagnosis:

- High TSH, low T4
- Thyroid antibodies

Treatment:

- Replacement thyroid hormone medication:
 - Thyroxin

Hyperthyroidism


Diagnosis:

- High TSH, free T3&T4.
- Thyroid antibodies (TSH receptors antibodies).
- Radionucleotide thyroid scan (increase uptake).
- Isotope scan is very important

Treatment:

- Radioactive iodine, anti-thyroid drugs & surgery.
- Drugs: *Beta*-blockers, Carbimazole and PTU (propylthiouracil)

Goiter

A swollen thyroid gland

Causes:

- Congenital (maternal antithyroid drugs, maternal hyperthyroidism, dyshormonogenesis)
- Physiological (puberty)
- Iodine deficiency
- Graves disease
- Hashimoto thyroiditis
- Tumor