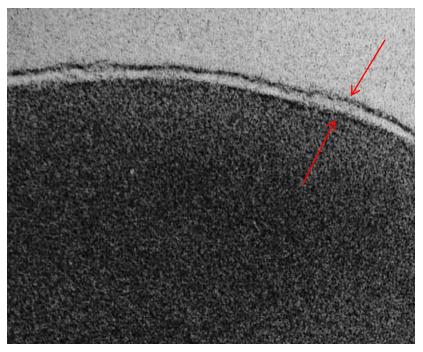
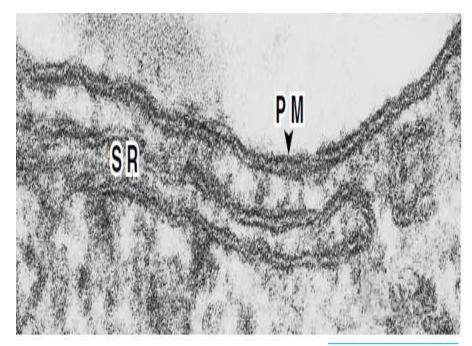
Plasma Membrane Structure and Function

Dr. S.D. Saraswathy
Assistant Professor
Department of Biomedical Science
Bharathidasan University, Tiruchirappalli

Introduction


- The plasma membrane (or cytoplasmic membrane) separates the interior contents from the outside environment.
- Protective outer boundary of a living cell.
- Thin, fragile structures of 5 to 10 nm wide.
- Ultrastructures could be examined only through the electron microscope.
- All membranes taken from various organisms (plants, animals, or microorganisms) have the same ultrastructure.


Plasma membrane

 The early electron micrographs portrayed the plasma membrane as a three-layered structure.

three-layered (trilaminar) structure of the plasma membrane of an erythrocyte

trilaminar structure of both the plasma membrane (PM) and the membrane of the sarcoplasmic reticulum (SR), a calcium-storing compartment of the cytoplasm.

 $0.1 \, \mu m$

Plasma membrane - Functions

Compartmentalization:

 The plasma membrane encloses the contents of the entire cell whereas various membrane-bound compartments of a cell enclose diverse contents.

Providing a selectively permeable barrier:

 Serve as a general barrier, have selected entry of molecules from one side to the other.

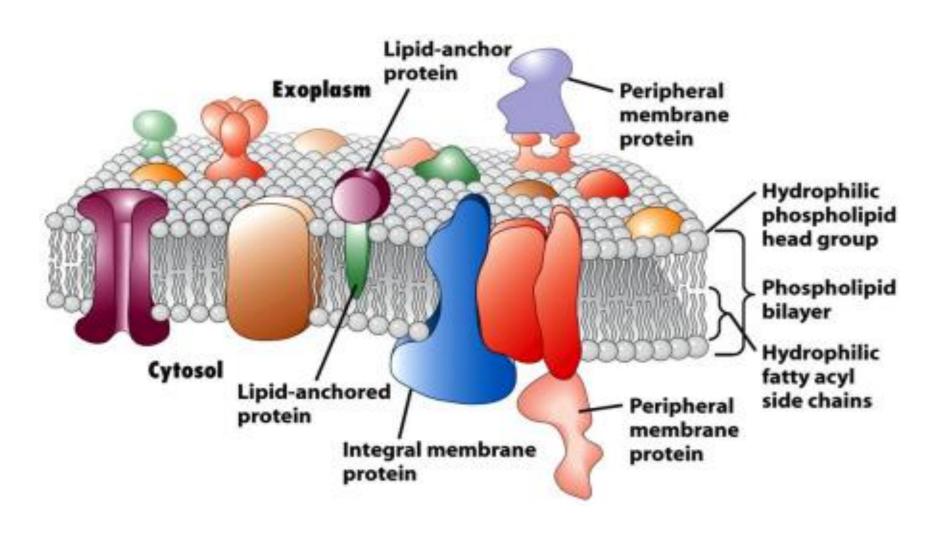
Scaffold for biochemical activities:

 Membranes provide the cell with an extensive framework (scaffolding) within which molecules can be interacted effectively.

Plasma membrane - Functions

Transportation:

 The transporting machinery of the membrane allows solutes, energy metabolites and specific ions from one side of the membrane to another by active and passive transport mechanisms.


Responding to external signals:

 Different receptors present in the membrane are capable of recognizing and responding to different external stimuli and ligands (Signal transduction).

Intercellular interaction:

 Allows cells to recognize one another and adhere, when exchange of material and information occurs.

Structure of Plasma Membrane

https://www.creative-proteomics.com/services/membrane-proteomics.htm

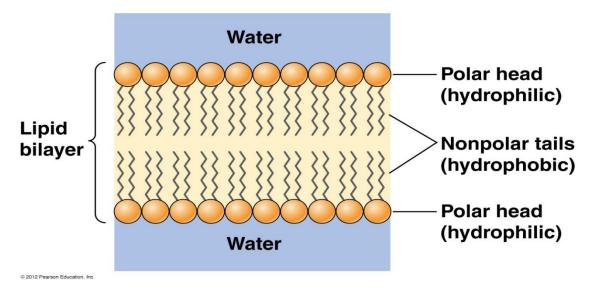
Biomembrane - Composition

- Biomembrane: Plasma membrane or internal membranes (e.g. endoplasmic reticulum, Golgi apparatus) that are present in all cells.
- All membranes consist of 3 main molecules:
 - Lipids
 - Proteins
 - Carbohydrates (Glycoproteins, Glycolipids)
- The ratio between lipid and proteins depends on the function of the cell.

Composition of the cell membrane

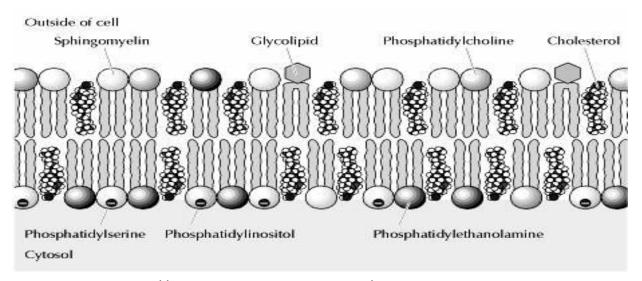
Different cell membranes possess different compositions.

Membrane	% By weight			
	Protein	Lipid	Carbohydrate	
Myelin	18	79	3	
Human erythrocyte plasma membrane	49	43	8	
Mouse liver	44	52	4	
Amoeba plasma membrane	54	42	4	
Chloroplast spinach lamellae	70	30	0	
Halobacterium purple membrane	75	25	0	
Mitochondrial inner membrane	76	24	0	


Basic structure

 Lipid bilayer: The basic structural unit of cell membranes.

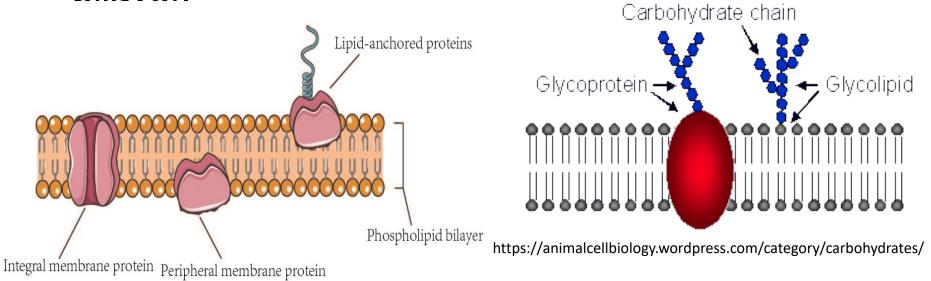
 Composed of two parallel sheets of phospholipid molecules arranged tail to tail (hydrophobic).


Hydrophilic heads at the surface on either side

membrane

Lipids of plasma membrane

- In addition to phospholipids, glycolipids and cholesterol are also found in plasma membrane.
- Glycolipids Lipid molecule, attached to a variety of sugars (straight or branched chain).
- Cholesterol Reduces membrane fluidity and permeability to some solutes.



Lipid Composition of Cell Membrane

Lipid (Mole %)	Plasma membrane		Rough	Outer
	E. coli	Erythrocyte	Endoplasmic reticulum	mitochondrial membranes
Phosphatidylcholine	0	17	55	50
Phosphatidylserine	0	6	3	2
Phosphatidylethanolamine	80	16	16	2
Sphingomyelin	0	17	3	5
Glycolipids	0	2	0	0
Cholesterol	0	45	6	< 5

Proteins of plasma membrane

- 20% or more of the weight of a membrane consists of protein molecules, mainley glycoproteins.
- Peripheral proteins (PP) and Integral proteins (IP) are the 2 major proteins associated with lipid bilayer.

Proteins of plasma membrane

- PPs occur either on the outside or the inside surface of the membrane anchored by covalent and non-covalent interactions.
- IPs extend completely through the cell membrane and may twist in and out of the membrane many times.
- Hydrophobic regions of the IP pass across the membrane and hydrophilic regions protrude from both surfaces of the bilayer.
- Many IPs are glycoproteins, have a short carbohydrate chain which project externally.

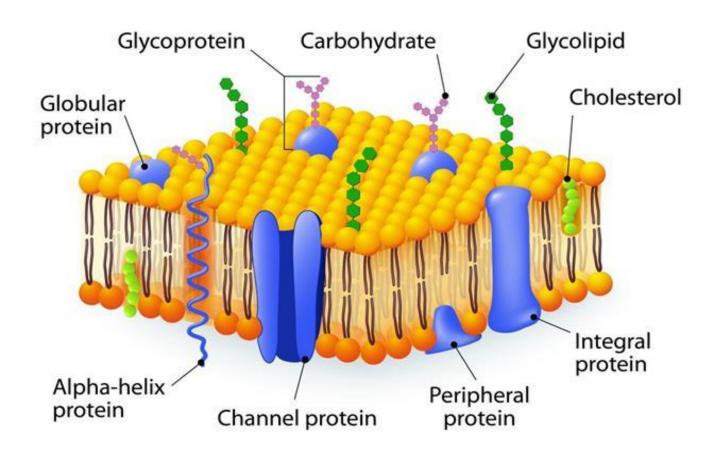
Membrane proteins: Functions

Performs various functions:

- ✓ Act as a carriers/channel to transport specific molecules across the membrane.
- ✓ Some act as a receptors, performs enzymatic action and also serves as structural links.
- ✓ Glycoproteins and glycolipids often help to stabilize the membrane structure.
- Glycoproteins help to identify, adhere to and communicate with the cell.
- ✓ Glycolipids serves as recognition sites for cell-cell interactions.
- ✓ IPs largely determine a membrane's specific functions.

Properties of Plasma Membrane

Membrane fluidity


- All cell membranes are dynamic and fluid structures.
- Fluidity is essential for the functioning of some enzymes which become inactive when the membrane solidifies.
- Cholesterol scattered in the lipid bilayer helps to maintain the membrane fluid consistent.
- Also, greater the concentration of unsaturated fatty acid residues (in hydrophobic tail region), the more fluid is the bilayer.
- In general the proteins are free to drift laterally in the fluid lipid bilayer.

The Mosaic Quality of the membrane

- Cell membranes have their own unique collections of proteins.
- Membranes have a mosaic pattern, depending on the types and quantity of proteins.
- The Plasma membrane of a RBC contain over
 50 different types of proteins.
- The proteins form different patterns and also they differ in composition within the same membrane i.e why the membrane is said to be a mosaic.

Fluid-mosaic model

 The overall structure of the cell membrane is represented by the fluid-mosaic model.

https://biologywise.com/fluid-mosaic-model