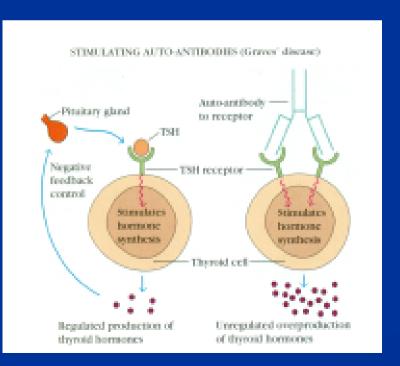
Autoimmunity

Dr. Shanmugaapriya
Assistant Professor
Department of Biomedical Science
Bharathidasan University
Trichy-24

Immune Tolerance - Essential?

Autoimmunity

 Break down of mechanism -induce tolerance to self antigens - autoimmunity


Classification

- Based on the organ or tissue involved
 - Organ-specific
 - IR directed against antigens associated with the target organ
 - Non-organ-specific
 - IR directed against an antigen not associated with the target organ

Effector mechanisms in autoimmune diseases

Antibodies -Direct effect

Agonist

Antagonist

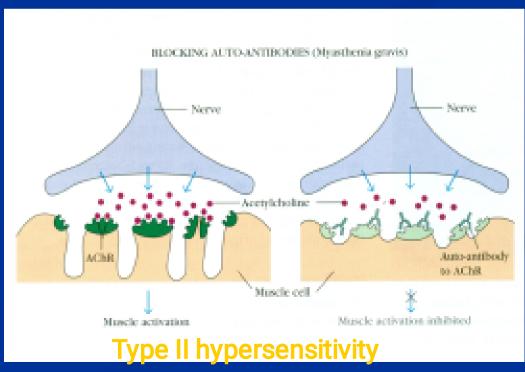
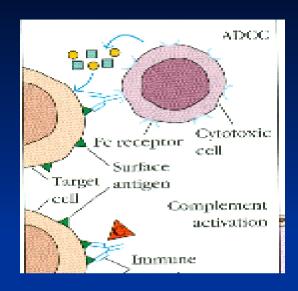
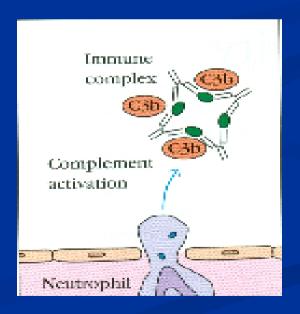



Figure from Kuby Immunology


Type II hypersensitivity

 Autoimmune hemolytic anemia

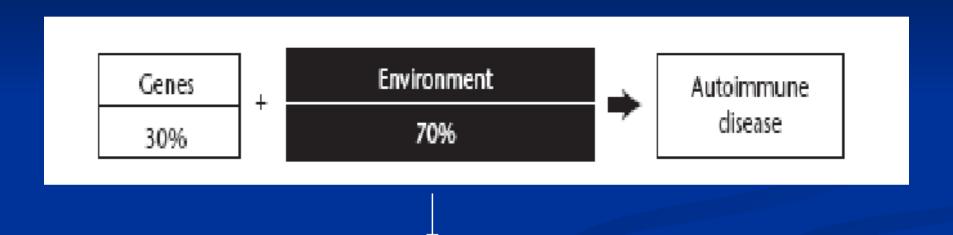
Type III hypersensitivity

- SLE
- RA
- Goodpasture's syndrome
- Poststreptococcal glomerulonephritis

Cell-mediated damage

Major cells

- phagocytic macrophages,
- neutrophils,
- self-reactive CD4+T helper cells
- self-reactiveCD8+cytolytic T cells


Minor role

- natural killer cells
- mast cells
- dendritic cells

Effector mechanisms in autoimmune diseases

Disease	Self antigen	Immune response	
ORGAN-SPECIFIC AUTOIMMUNE DISEASES			
Addison's disease	Adrenal cells	Auto-antibodies	
Autoimmune hemolytic anemia	RBC membrane proteins	Auto-antibodies	
Goodpasture's syndrome	Renal and lung basement membranes	Auto-antibodies	
Graves' disease	Thyroid-stimulating hormone receptor	Auto-antibody (stimulating)	
Hashimoto's thyroiditis	Thyroid proteins and cells	T _H 1 cells, auto-antibodies	
Idiopathic thrombocyopenia purpura	Platelet membrane proteins	Auto-antibodies	
Insulin-dependent diabetes mellitus	Pancreatic beta cells	T _H 1 cells, auto-antibodies	
Myasthenia gravis	Acetylcholine receptors	Auto-antibody (blocking)	
Myocardial infarction	Heart	Auto-antibodies	
Pernicious anemia	Gastric parietal cells; intrinsic factor	Auto-antibody	
Poststreptococcal glomerulonephritis	Kidney	Antigen-antibody complexes	
Spontaneous infertility	Sperm	Auto-antibodies	
SYSTEMIC AUTOIMMUNE DISEASES			
Ankylosing spondylitis	Vertebrae	Immune complexes	
Multiple sclerosis	Brain or white matter	T _H 1 cells and T _C cells, auto-antibodies	
Rheumatoid arthritis	Connective tissue, IgG	Auto-antibodies, immune complexes	
Scleroderma	Nuclei, heart, lungs, gastrointestinal tract, kidney	Auto-antibodies	
Sjögren's syndrome	Salivary gland, liver, kidney, thyroid	Auto-antibodies	
Systemic lupus erythematosus (SLE)	DNA, nuclear protein, RBC and platelet membranes	Auto-antibodies, immune complexes	

Etiology of autoimmune diseases

INFECTIOUS AGENTS
NON-INFECTIOUS AGENTS

Genetic Susceptibility To Autoimmunity

- Epidemiologic studies
 - Genetic factors are crucial determinants
- Familial clustering
 - Hashimoto's thyroiditis (first degree relatives)
 - Pernicious anemia
- Studies in twins
 - rate of concordance is higher in monozygotic than in dizygotic twins

- Linkage analysis
 - MHC complex
 - Candidate loci for susceptibility
 - cytokines,
 - cytokine receptors
 - other immunoregulatory molecules

HLA alleles & Autoimmune Disease

Disease	HLA allele
Ankylosing spondylitis	B27
Goodpasture's syndrome	DR2
Graves's disease	B8/DR5
Juvenile rheumatoid arthritis	B27/DR5
Multiple sclerosis	DR2
Myasthenia gravis	DR3
Rheumatoid arthritis	DW4/DR4
Sjogren's syndrome	DW3
Systemic lupus erythematosus	DR3
Ulcerative colitis	B5
Pernicious anemia	DR5

 HLA Allelic variation in different individuals accounts functional differences

- by differential ability to bind
- by differential ability in displaying antigeneic peptides

Non-HLA genes

- Functional polymorphisms or mutations / tolerance induction
- SNP or microsatellites promoter / other regulatory regions of genes

Functions

- affect the amount of protein produced
- the degree of receptor expression
- their functional ability to bind their ligands
- strength of their immune response

- Cytokines
- CTLA-4
- FOX-P3
- FAS, FASL & Bcl2

Cytokines gene polymorphisms

- Inter-individual differences in cytokine production
- mechanism for the alteration of the TH1/TH2 balance
- efficient functioning of the immune system thus contributing for the clinical course and outcome of many immune diseases

Infectious Agents

- Potential to initiate autoreactivity through
 - Molecular mimicry
 - Polyclonal activation
 - Release of previously sequestered antigens
 - Cytokine imbalance