

Dr. P. SANTHANAM

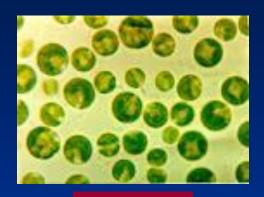
Assistant Professor

Marine Planktonology & Aquaculture Lab., Department of Marine Science, School of Marine Sciences Bharathidasan University, Tiruchirappalli-620 024, Tamil Nadu.

E-mail: santhanam@bdu.ac.in

Website: www.mpalbdu.weebly.com

Condition:


Seawater is dense enough to support marine organisms

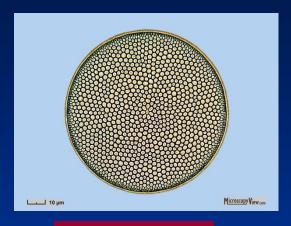
Adaptations:

Many marine organisms lack rigid skeletons and vast root systems.

Instead, they rely on buoyancy and friction to maintain their position within the water column

The reduction in size, by which the organisms can have larger surface area in relation to their mass, hence the particles will have more frictional resistance and would avoid sinking

Chlorella sp.

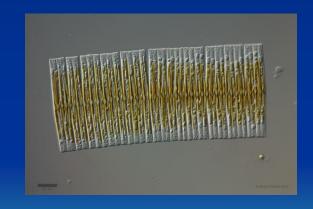

Several planktonic organisms carry globules of fat/oil, so that their specific gravity will be less.

Coscinodiscus sp.

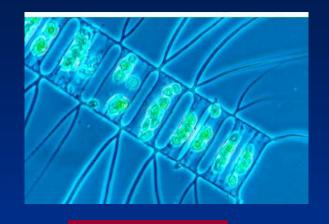
• Some shelled plankton such as diatoms are even heavier-often these have flattened disc shapes, so their sinking takes longer time

• Some have also bladders or vacuoles, filled with light fluid or sap mentioned.

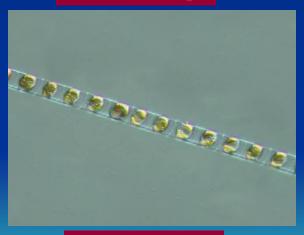
Coscinodiscus sp.


Pleurosigma sp.

 Needle and hair type of adaptation also enable floating e.g. *Rhizosolenia* sp.


Rhizosolenia sp.

• Some are ribbon shaped. Eg. *Fragillaria* sp.


Fragillaria sp.

• The diatom, has many spines and projections to avoid sinking.

Chaetoceros sp.

 Some diatom species form long chains, which help them float and avoid being eaten

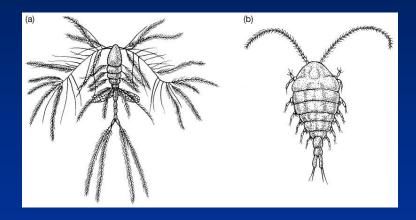
Skeletonema sp.

• The dinoflagellates have two whip like flagella and are not strictly passive-some have low horn like structures the length of which change with ambient temperature.

Ceratium sp.

• Most of the zooplankton forms have elongated appendages, spines or bristles and are at times dorsoventrally flattened.

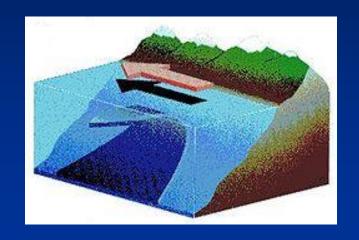
Sea Jelly



Copepods

Appendages increase frictional resistance

 Many warm-water organisms have ornate appendages to say afloat


 Many cold-water organisms are streamlined to swim more easily

Warm-water copepod

Cold-water copepod

In addition, water currents caused by convection and upwelling can stir the water and help keep plankton from sinking

