S.No. 3161

P 16 MAE 5 C

Answer any THREE Questions.

- 16. Show that for every real number $y \ge 2$, $\sum_{p \le y} \frac{1}{p} > \log \log y 1$.
- 17. Show that the congruence $f(x) \equiv 0 \pmod{p}$ of degree n has at most n.
- 18. The order of an element of a finite group G is divisor of the order of the group. Show that if the order of the group is denoted by n, then $a^n = e$ for every element a in the group.
- 19. Suppose that n > 0, and let N(n) denote the number of solutions of the congruence $S^2 \equiv -1 \pmod{n}$. Show that r(n) = 4N(n), and $R(n) = \sum r \binom{n}{d^2}$ where the sum is extended over all those positive d for which d^2/x .
- 20. Find all solutions of 999x 49y = 5000.

(For candidates admitted from 2016–2017 onwards)

M.Sc. DEGREE EXAMINATION, NOVEMBER 2022.

Mathematics - Elective

ALGEBRAIC NUMBER THEORY

Time: Three hours

Maximum: 75 marks

SECTION A — $(10 \times 2 = 20)$

Answer ALL questions.

- 1. Define divisible.
- 2. Define least common multiple.
- 3. Determine the value of 999¹⁷⁹ (mod 1763).
- 4. Solve $x^2 + x + 7 \equiv 0 \pmod{81}$.
- 5. Define Group.
- 6. Define Legendre symbol.
- 7. Define quadratic forms.

- 8. Define modular group.
- 9. Find all integer's x and y such that 147x + 258y = 369.
- 10. Define unimodular.

SECTION B —
$$(5 \times 5 = 25)$$

Answer ALL the questions by choosing either (a) or (b).

11. (a) State and prove the division algorithm.

Or

- (b) Show that for any integer x, (a,b)=(b,a)=(a,-b)=(a,b+ax).
- 12. (a) Show that 1387 is composite.

Or

- (b) Suppose that m is a positive integer and that (a,m)=1. Show that if k and \overline{k} are positive integers such that $k\overline{k} \equiv 1 \pmod{\phi(m)}$, then $a^{k\overline{k}} \equiv a \pmod{m}$.
- 13. (a) The set Z_m of elements 0, 1, 2, ..., m-1, with addition and multiplication defined modulo m, is a ring for any integer m>1. Show that such a ring is a field if and only if m is a prime.

Or

(b) Let P be an odd prime. Prove that

(i)
$$\left(\frac{a}{p}\right) \equiv a^{(p-1)/2} \pmod{p}$$

(ii)
$$\left(\frac{a}{p}\right)\left(\frac{b}{p}\right) = \left(\frac{ab}{p}\right)$$
.

14. (a) Let $f(x,y)=ax^2+bxy+cy^2$ be a binary quadratic form with integral coefficients and discriminant d. Show that if $d \neq 0$ and d is not a perfect square, then $a \neq 0$, $c \neq 0$ and the only solution of the equation f(x,y=0) in integers is given by x=y=0.

Or

(b) Let f and g be binary quadratic forms. Prove that

(i)
$$f \sim f$$

(ii) if
$$f \sim g$$
, then $g \sim f$.

15. (a) Let S be a set of k integers. If m > 1 and $2^k > m+1$, prove that there are two distinct non empty subsets of S, the sums of whose elements are congruent modulo m.

Or

(b) Show that if u and v are relatively prime positive integers whose product uv is a perfect square, then u and v are both perfect squares.