- 17. Show that $(x)(P(x) \lor Q(x)) \Rightarrow (x)P(x) \lor (\exists x) Q(x)$.
- 18. Let $\langle L, \leq \rangle$ be a lattice in which * and \oplus denote the operations of meet and join respectively. For any $a, b \in L$, $a \leq b \Leftrightarrow a * b = a \Leftrightarrow (a \oplus b) = b$.
- 19. Write the following Boolean expression in an equivalent sum of products canonical form in three variables x_1, x_2 and x_3 .
 - (a) $x_1 * x_2$
 - (b) $x_1 \oplus x_2$
 - (c) $(x_1 \oplus x_2)' * x_3$
- 20. Let G = (V, T, S, P) be the phrase-structure grammar with $V = \{0, 1, A, B, S\}$, $T = \{0, 1,\}$ and set of production P consisting of $S \to 0A$, $S \to 1A$, $A \to 0B$, $B \to 1A$, $B \to 1$.
 - (a) Show that 10101 belongs to the language generated by \mathbf{G}
 - (b) Show that 10110 does not belong to the language generated by G
 - (c) What is the language generated by G?

S.No. 3151

P 16 MAE 3 B

(For candidates admitted from 2016-2017 onwards)

M.Sc. DEGREE EXAMINATION, NOVEMBER 2022.

Mathematics — Elective

DISCRETE MATHEMATICS

Time: Three hours Maximum: 75 marks

SECTION A —
$$(10 \times 2 = 20)$$

Answer ALL questions.

- 1. Define Domain.
- 2. Define Symmetric.
- 3. Form the conjunction of

P: It is raining today.

Q: There are 20 tables in this room.

- 4. Write the following statement in symbolic form.

 If either Jerry takes Calculus or Ken takes Sociology then Larry will take English.
- 5. Define Complete Lattice.
- 6. Define Complemented Lattice.
- 7. Define sub-Boolean algebra.
- 8. Prove the following Boolean identity. $a \oplus (a' * b) = a \oplus b$

- 9. Define parse tree.
- 10. Define context-sensitive grammar.

SECTION B —
$$(5 \times 5 = 25)$$

Answer ALL questions, choosing either (a) or (b).

11. (a) Let S be the set of all statement functions in n variables and let R be the relation given by

$$R = \{ \langle xy \rangle \mid x \in S \land y \in S \land x \Leftrightarrow y \}$$

Discuss the equivalence classes generated by the elements of S.

Or

- (b) Let $X = \{a,b,c,d,e\}$ and let $C = \{\{a,b\},\{c\},\{d,e\}\}\}$ Show that the partition C defines an equivalence relation on X.
- 12. (a) Show that $P \to (Q \to R) \Leftrightarrow P \to (Q \lor R) \Leftrightarrow (P \land Q) \to R$.

Or

(b) Show that $(P \land (Q \land R)) \lor (Q \land R) \lor (P \land R) \Leftrightarrow R$.

13. (a) Let $\langle L, \leq \rangle$ be a lattice, For any $a, b, c \in L$, prove that the following $a \leq c \Leftrightarrow a \oplus (b * c) \leq (a \oplus b) * c$.

Or

- (b) Prove that the direct product of any two distributive lattices is a distributive lattice.
- 14. (a) Obtain the product of sums canonical forms of the Boolean expressions in $x_1 * x_2$.

Or

- (b) Find the value of the function $f_{\alpha, B}: B^3 \to B$ for $x_1 = \alpha, x_2 = 1$ and $x_3 = b$ where a, b, 1 are the elements of the Boolean algebra.
- 15. (a) Construct phrase-structure grammars to generate each of these sets
 - $(i) \quad \left\{0^n \mid n \ge 0\right\}$
 - (ii) $\{1^n 0 \mid n \ge 0\}$
 - (iii) $\{(000)^n \mid n \ge 0\}$

)r

(b) Construct the grammar for the language $L(G_3) = \{a^n b^n c^n \mid n \ge 1\}.$

SECTION C —
$$(3 \times 10 = 30)$$

Answer any THREE questions.

16. Show that

- (a) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- (b) $\sim \sim A = A$