- 19. Explain about Markov chains with examples.
- 20. Explain the regular solids.

S.No. 3142

P 16 MAE 1 B

(For candidates admitted from 2016–2017 onwards)

M.Sc. DEGREE EXAMINATION, NOVEMBER 2022.

Mathematics — Elective

MATHEMATICAL MODELING

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 2 = 20)$

Answer ALL questions.

- 1. Solve $\frac{dx}{dt} = ax + k$.
- 2. Write the Logistic law.
- 3. Write the model with removal and immigration.
- 4. What are the assumptions for Domar Macro model?
- 5. Solve the linear, differential equation of the second order mx''+cx'+kx=0.
- 6. Write the time period of circular motion of satellites.

- 7. Define Prey-Predator model.
- 8. Define z-transform.
- 9. Define complete graph and directed graph.
- 10. State the structure theorem.

PART B —
$$(5 \times 5 = 25)$$

Answer ALL questions, choosing either (a) or (b).

11. (a) Derive the linear differential equation of the first order of a simple compartment model.

Or

- (b) Derive the simple Harmonic motion equation.
- 12. (a) Explain competition models.

Or

- (b) Show that $\underset{t\to\infty}{Lt} S(t) = 0, \underset{t\to\infty}{Lt} I(t) = n+1$ with usual notations for a simple Epidemic model.
- 13. (a) Derive $e = \frac{h_{\text{max}} h_{\text{min}}}{2a + h_{\text{max}} h_{\text{min}}}$ for Elliptic motion of satellites.

Or

(b) Derive the equation of the common cantenary.

S.No. 3142

14. (a) Obtain the complementary function by using matrices.

Or

- (b) Explain improvement of planets through elimination of recessives.
- 15. (a) State and prove Euler's formula for polygonal graphs.

Or

(b) Explain one-way traffic problem.

PART C —
$$(3 \times 10 = 30)$$

Answer any THREE questions.

- 16. Find the orthogonal trajectories of the following family of curves.
 - (a) y = mx, where m is parameter
 - (b) Family of confocal conics $\frac{x^2}{a^2 + \lambda} + \frac{y^2}{b^2 + \lambda} = 1, \text{ where } \lambda \text{ is a parameter.}$
 - (c) Polar coordinates $r = 2a\cos\theta$ where a > 0 is a parameter. Also replace $r\frac{d\theta}{dr}$ by $\frac{-1}{\left(r\frac{d\theta}{dr}\right)}$.