(6 pages)

S.No. 3139

P 16 MA 22

(For candidates admitted from 2016–2017 onwards)

M.Sc. DEGREE EXAMINATION, NOVEMBER 2022.

Mathematics

LINEAR ALGEBRA

Time: Three hours Maximum: 75 marks

PART A — $(10 \times 2 = 20)$

Answer ALL questions.

- 1. Define Vector space.
- 2. What is Row reduce echelon matrix?
- 3. Define linear transformation.
- 4. Define a hyperspace.
- 5. Define an ideal.
- 6. Define algebraically closed.
- 7. State Cayley-Hamilton theorem.

- 8. Define minimal polynomial.
- 9. Define invariant under T.
- 10. When the linear operator is known to be nilpotent?

PART B — $(5 \times 5 = 25)$

Answer ALL questions, choosing either (a) or (b).

- 11. (a) If A is an $n \times n$ matrix, then prove that the following are equivalent.
 - (i) A is invertible.
 - (ii) A is row-equivalent to the $n \times n$ identity matrix.
 - (iii) A is a product of elementary matrices.

Or

(b) Prove that every $m \times n$ matrix over the field F is row-equivalent to a row-reduced matrix.

12. (a) Let T be a linear transformation from V into W. Then prove that T is non-singular if and only if T carries each linearly independent subset of V onto a linearly independent subset of W.

Or

- (b) Let V be a finite-dimensional vector space over the field F, and let W be a subspace of V. Then prove that dim $W+W^0=\dim V$.
- 13. (a) Let p,f, and g be polynomials over the field F. Suppose that p is a prime polynomial and that p divides the product fg. Then prove that either p divides f or p divides g.

Or

(b) Let K be a commutative ring with identity, and let A and B be $n \times n$ matrices over K. Then show that $\det(AB) = (\det A)(\det B)$. 14. (a) Let V be a finite-dimensional vector space over the field F and let T be a linear operator on V. Then prove that T is diagonalizable if and only if the minimal polynomial for T has the form $p = (x - c_1) \dots (x - c_k)$, where c_1, \dots, c_k are distinct elements of F.

Or

- (b) Let T be a linear operator on an $n-dimensional\ vector$ space V. Then prove that the characteristic and minimal polynomials for T have the same roots, except for multiplicities.
- 15. (a) Let P be an $m \times m$ matrix with entries in the polynomial algebra F[x]. Prove that the following are equivalent.
 - (i) P is invertible.
 - (ii) The determinant of P is a non-zero scalar polynomial.
 - (iii) P is row-equivalent to the $m \times m$ identity matrix.
 - (iv) P is a product of elementary matrices.

Or

- (b) If $V=W_1\oplus\ldots\oplus W_k$, then prove that there exist k linear operators E_1,\ldots,E_k on V such that
 - (i) each E_i is a projection $(E_i^2 = E_i)$;
 - (ii) $E_i E_i = 0$, if $i \neq j$;
 - (iii) $I = E_1 + ... + E_k$;
 - (iv) The range of E_i is W_i .

PART C —
$$(3 \times 10 = 30)$$

Answer any THREE questions.

- 16. If W_1 and W_2 are finite-dimensional subspaces of a vector space V, then prove that $W_1 + W_2$ is finite-dimensional and $\dim W_1 + \dim W_2 = \dim(W_1 \cap W_2) + \dim(W_1 + W_2)$.
- 17. Let V and W be vector spaces over the field F. Let T and U be linear transformations from V into W. The function (T+U) defined by

$$(T+U)(\infty) = T \propto +U \propto$$

Is a linear transformation sfrom V into W. If c is any element of F, the function (cT) defined by

$$(cT)(\infty) = c(T\infty)$$

Is a linear transformation from V into W. Then prove that the set of all linear transformations from V into W, together with the addition and scalar multiplication defined above, is a vector space over the field F.

- 18. State and prove Taylor's Formula.
- 19. State and prove Cayley-Hamilton theorem.
- 20. State and prove Primary Decomposition Theorem.