Or

- (b) Describe about binary heap.
- 19. (a) Give a short note on B-tree.

Or

- (b) Demonstrate red-black tree.
- 20. (a) Illustrate single source shortest path algorithm.

Or

(b) Determine All-Pairs shortest paths.

PART C —
$$(3 \times 10 = 30)$$

Answer any THREE questions.

- 21. Write a detailed note singly linked list with example.
- 22. Explain the following in detail: (a) Separate chaining (b) Universal hashing (c) Extendible hashing.
- 23. Illustrate the following basic heap operations:
 (a) Insert (b) delete (c) percolate down.
- 24. Describe in detail about multi-way search trees.
- 25. Elucidate topological sort with examples.

S.No. 3102

P 22 ITCC 1 B

(For candidates admitted from 2022-2023 onwards)

M.Sc. DEGREE EXAMINATION, NOVEMBER 2022.

Information Technology — Core Choice Course

ADVANCED DATA STRUCTURES

Time: Three hours Maximum: 75 marks

PART A — (20 marks)

Answer ALL questions.

I. Choose the Correct Answer $(5 \times 1 = 5)$

- 1. The data structure required for Breadth First Traversal on a graph is_____
 - (a) Stack

(b) Array

(c) Queue

- (d) Tree
- 2. Which of the following problems occur due to linear probing?
 - (a) Primary collision
- (b) Secondary collision
- (c) Separate chaining (d)
- (d) Extendible hashing

3.	What is the best-case complexity in building a heap?	8.	In a max-heap, element with the greatest key is always in node.
	(a) O (nlogn) (b) O (n2)	9.	is an application of Red-black trees.
	(c) O (n*longn *logn) (d) O (n)	10.	The is for solving the All Pairs
4.	Which of the following is the most widely used external memory data structure?	III.	Shortest Path problem. Answer ALL questions. $(5 \times 2 = 10)$
	(a) AVL tree	11.	Define queue. $(3 \times 2 - 10)$
,	(b) B-tree(c) Red-black tree	12.	What is quadratic probing?
	(d) Both AVL tree and Red-black tree	13.	What is heap order property?
5.	Which of the following is an all pair shortest path algorithm of graphs?	14.	Distinguish between single rotation and double rotation.
	(a) Bellman - Ford algorithm	15.	Determine shortest path algorithm.
	(b) Ford - Fulkerson algorithm(c) Floyd – Warshall algorithm		PART B — $(5 \times 5 = 25)$
e	(c) Floyd – Warshall algorithm(d) Dijkstra's algorithm	Ar	nswer ALL the questions, choosing either (a) or (b)
II.	Fill in the Blanks $(5 \times 1 = 5)$	16.	(a) List out the uses of linked list. Or
6.	A linear list of elements in which deletion can done from one end front and insertion can take		(b) Write a short note on selection sort.
	place only at the rear is known as	17.	(a) Explain about double hashing and rehashing.
7.	technique used for finding similarity between two set.		Or
			(b) Describe hash tables without linked lists.
	2 S.No. 3102		3 S.No. 3102