International Journal of Advanced Research in Engineering and Technology (IJARET)

Volume 11, Issue 11, November 2020, pp. 2446-2453, Article ID: IJARET_11_11_242 Available online at https://iaeme.com/Home/issue/IJARET?Volume=11&Issue=11

ISSN Print: 0976-6480 and ISSN Online: 0976-6499 DOI: https://doi.org/10.34218/IJARET.11.11.2020.242

© IAEME Publication Scopus Indexed

IMPACT OF IRRIGATION ON CROPPING PATTERN IN VALADI AND SEVALUR REVENUE VILLAGES OF TIRUCHIRAPPALLI DISTRICT

P. Prisheela¹ and Dr. S. Shanthi Getzie Ranjini Devi²

¹Ph.D. (FT), Research Scholar, Department of Economics, Bishop Heber College (Autonomous), (Affiliated to Bharathidasan University) Tiruchirappalli, Tamil Nadu, India

²Associate Professor & Research Advisor, Department of Economics, Bishop Heber College (Autonomous), (Affiliated to Bharathidasan University), Tiruchirappalli, Tamil Nadu, India

ABSTRACT

Irrigation is one of the main factors influencing the cropping pattern. And irrigation is a vital input at different stages of cultivation of crops. The sources of irrigation are tanks, bore wells, wells, canals, river and reservoirs. Apart from these sources the change in cropping pattern is mainly dependent on monsoon and amount of rainfall in various seasons. Rainfall is not fulfilling the demand of water. Canals are non-perennial in nature. The principal crops cultivated in both the Revenue villages namely Valadi and Sevalur are Paddy, Sugarcane, Banana, Urad, Sesame and Makkamaize, White maize, Red maize, Black maize, and Horse Gram (Kollu) respectively. The total number of beneficiaries are 60. The purpose of cultivation include, own consumption, fodder for breading animals, commercial farming, and subsistence farming have also been analysed in the present study. Apart from this, the sources of selling access and reasons for changing cropping pattern on selected five crops have also been studied and analysed. The present study is mainly based on primary data, collected from Valadi and Sevalur revenue villages of Trichirappalli district.

Key words: Irrigation, consumption, fodder, cultivation, access

Cite this Article: P. Prisheela and S. Shanthi Getzie Ranjini Devi, Impact of Irrigation on Cropping Pattern in Valadi and Sevalur Revenue Villages of Tiruchirappalli District, *International Journal of Advanced Research in Engineering and Technology (IJARET)*, 11(11), 2020, pp. 2446-2453.

https://iaeme.com/Home/issue/IJARET?Volume=11&Issue=11

1. INTRODUCTION

Irrigation is one of the main factors influencing the cropping pattern. If water is adequate cropping pattern can be changed. Water is a critical input that largely determines the cropping pattern of a region or district or taluk or revenue villages. Bore wells and wells irrigation has lead to a marked change in the cropping pattern in the present study, villages of Trichirappalli district (Gopinath & Shibu, 2015a). It is true that the increase in irrigation facilities in the form of construction of tanks, tempted the farmers to cultivate two or more than two crops. It has been rightly pointed out that irrigation facilities indicate the basic factor to improve the income of the farmers by keeping to after their cropping pattern. Irrigation is human being's efforts to substitute for any deficiency in natural rainfall with the objective of a steady expansion in crop output. The impact of irrigation on cropping pattern depends upon the magnitude of irrigated and un-irrigated areas, income and also the overall crop yield per hectare with special reference of sample revenue villages (Gopinath & Shibu, 2015b). It is observed that the more variations found in the impact of irrigation on cropping pattern in the study area.

1.1. Agro – Climatic Zone – Cauvery Delta Zone

The Cauvery Delta Zone covers the districts such as Thanjavur, Nagapattinam, Thiruvarur and Trichirappalli. Apart from these some parts of Karur, Pudukkottai and Cuddalore districts have covered in Cauvery Delta Zone. The type of soil that have found in this zone is Red loamy and Alluvium. Based on soil characteristics, rainfall distribution, irrigation pattern, cropping pattern and other ecological and social characteristics, the agro-climatic zone has been classified as Cauvery Delta Zone of Tamilnadu, with four important districts (Gopinath & Kalpana, 2020). The Cauvery Delta Zone lies in the eastern part of Tamilnadu between 10°00′ and 11°30″ North latitude and 78°15′ and 79°45′ East longitude. It is a deltaic zone. Cauvery is the river traversing the delta. The terrain is an open plain sloping gently towards each and devoid of any hills or hillocks. The attitude ranges from 6 to 250 m above Mean Sea Level (MSL). The Cauvery delta zone has diverse climatic conditions as the zone includes coastal belt as well as in land area (Gopinath, 2016a). Cyclonic storms and high humidity occur in coastal belts. The coastal belt is favoured by high rainfall and when it proceeds to the interior, the rainfall intensity decreases. The mean maximum temperature searches 38.6°cin the month of May and the minimum of 21.0° c in December. April to August is the hot month and November to February are cool months.

2. OBJECTIVES OF THE STUDY

- To study the farm size and cropping pattern in both the study revenue villages namely Valadi and Sevalur.
- To find out the sources of irrigation facilities in both the study revenue villages namely Valadi and Sevalur.
- To analyse the reasons for changing cropping pattern in both the study revenue villages namely Valadi and Sevalur.
- To find out the purpose of cultivation in both the study revenue villages.
- To assess the rainfall in various season in the period 2018-2019.

3. METHODOLOGY

The present study is based on both primary and secondary data for a period of one year (i.e) 2018-2019. The primary data is collected with the help of interview schedule from the farmers in both the study revenue villages namely Valadi and Sevalur. The secondary data is obtained from various published sources such as season and crop report, Tamilnadu, Indian, and

MeteorologicalDepartment Chennai. Crop informations, Tamilnadu, Government data (India, Tamilnadu&Trichirappalli) and crop data, census report, Statistical Department Trichy and Agricultural Department, Trichy for a period of 2018 2019.

3.1. Sample Size

The total sample size is 60. Each village 30 farmers are identified and data is collected. The periods of data collection is for one calendar year (i.e.) 2018-2019.

3.2. Statistical Tool

The statistical tools such as simple averages, Rank correlation coefficient and Chi-square test have also been calculated.

3.3. Hypotheses

- There is a positive rank correlation between Valadi and Sevalur villages regarding the reasons for changing cropping pattern.
- There is a significant relationship between beneficiaries and non-beneficiaries and the sources of irrigation facilities.

3.4. Hypothesis Tested (Chi-Square Test)

The main focus of the present study is to find out the impact of irrigation on changing cropping pattern in both the study villages namely Valadi and Sevalur of Trichirappalli district.

The total number of farmers and regarding the source of irrigation is tested by using chisquare test where the total sample is 90. It is classified as sources of irrigation – Bore wells, wells and canals and farmers have classified as beneficiaries (60) and non-beneficiaries (30).

Result of Chi-square Test

Chi-square (X²) =
$$\sum (0 - E)^2 / E$$

= 20.1
V = (r-1) (c-1) = (2-1) (3-1) = 2 for
V = 2, X² at 5 % level of significance ($X_{0.05}^2 = 5.99$)

The calculated value of Chi-square is grater (20.1) than the table value of $(X_{0.05}^2 = 5.99)$ level of significance and so null hypothesis (H_o) is rejected. Hence, it is concluded that there is association between sources of irrigation and farmers (both beneficiaries and non-beneficiaries) in both the study area (Gopinath, 2016b).

4. ANALYSIS OF DATA

The present study is an empirical one, data is collected from two revenue villages namely Valadiand Sevelur. The Table 1, explains the relationship between farm size and the varieties of crop cultivated in Valadi village (Gopinath, 2014). It is found that 30 per cent of the crops cultivated with the farm size of 1 to 2 hectare and the least is above 10 hectare of with 3.33 per cent. The farmers are cultivating the Paddy crop which is the staple food. But, in Table 2, it is found that, in Sevalur village being a dry area, the farmers are cultivating the crop named Makka Maize, Black Maize and Horse Gram (i.e.) 73.33 per cent with the farm size of below 1 hectare of land holding.

Table 1 Farm size and cropping pattern (Valadi Revenue Village)

S.	Farm size		Name of the crops					% to
No	(in Hectare)	Paddy	Sugarcane	Banana	Urad	Sesame	no.of farmers	total
1	Below 1	4	0	0	2	2	8	26.67
2	1 - 2	4	0	1	2	2	9	30.00
3	2 - 4	3	1	1	1	1	7	23.33
4	4 - 10	1	2	2	0	0	5	16.67
5	Above 10	0	1	0	0	0	1	3.33
	TOTAL	12	4	4	5	5	30	100.00

Source: Compiled from primary data.

Table 2 Farm size and cropping pattern (Sevalur Revenue Village)

S.	Farm size		Na	me of the cr	ops		Total	% to
No	(in	Makka Maize	White Maize	Red Maize	Black Maize	Horse	no.of	total
	Hectare)	Maize	Maize	Maize	Maize	Gram	farmers	
1	Below 1	3	1	2	13	3	22	73.33
2	1 - 2	2	2	1	1	2	8	26.67
3	2 - 4	0	0	0	0	0	0	0
4	4 - 10	0	0	0	0	0	0	0
5	Above 10	0	0	0	0	0	0	0
	TOTAL	5	3	3	14	5	30	100.00

Source: Compiled from primary data.

 Table 3 Source of Irrigation (Valadi Revenue Village)

S.No	Sources of Irrigation	No. of Beneficiaries	% to total
1	Borewells	8	26.67
2	Wells	0	0
3	Canals	22	73.33
4	River/Tank	0	0
5	Reservoirs	0	0
	TOTAL	30	100.00

Source: Compiled from primary data.

Table 3 and 4, explained the sources of irrigation in both the villages. In the Valadi village, farmers have mostly used canals as the maximum source of irrigation for cultivating Paddy, Sesame and Urad (i.e.) 73.33 for per cent and usage of Borewells is only 26.67 per cent. But in the case of Sevalur village, farmers are using Borewells (63.33 per cent) and 36.67 percent farmers are having wells. In this village farmers are cultivating Black Maize, Makka Maize and Horse Gram (Kollu), because these crops do not consume more quantity of water to cultivate these crops. And, in both the villages' farmers have mainly dependent on rain water and monsoon (Gopinath & Shibu, 2014).

Table 4 Source of Irrigation (Selavur Revenue Village)

S.No	Sources of Irrigation	No.of Beneficiaries	% to total
1	Borewells	19	63.33
2	Wells	11	36.67
3	Canals	0	0
4	River/Tank	0	0
5	Reservoirs	0	0
	TOTAL	30	100.00

Source: Compiled from primary data.

Table 5 Reasons for cropping pattern in both the Revenue village

S.No	Reasons	Total No. o	of Farmers	% to Total	
3.110	Reasons	Valadi	Sevalur	Valadi	Sevalur
1	Decline in yield of cultivation	10	2	33.33	6.67
2	High cost of production	2	3	6.67	10.00
3	Lack of Irrigation	0	17	0	56.66
4	Scarcity of Labour	7	3	23.33	10.00
5	Introduction of new varieties/crops	6	2	20.00	6.67
6	Lack of purchase of crops by the buyers	5	0	16.67	0
7	Problem of Marketing	0	3	0	10.00
	TOTAL	30	30	100.00	100.00

Source: Compiled from primary data.

Table 5, shows the reasons for changing cropping pattern in both the villages. From this, the farmer's order of preference (Rank) is found out and Rank Correlation Coefficient is calculated. There are seven reasons identified. The reasons are decline in yield of cultivation, high cost of production, lack of irrigation, scarcity of labour, introduction of new varieties, lack of purchase of crops by the buyers and problem of marketing (Gopinath, 2020a). But, it is found that in both the study villages (Valadi & Sevalur), the farmers expressed their view as lack of irrigation (56.66 per cent) and decline in yield of cultivation (33.33 per cent) made than to change the cropping pattern where the crops will consume low quantity of water especially in Sevalur village (Dry area). But, in Valadi village, the farmers are enjoying irrigation facilities either by using canals or borewells as a source of water for cultivation.

The reasons for changing cropping pattern is analysed by applying Spearman's Rank correlation on farmer's preferences. The calculated value of Rank correlation Coefficient is +0.83. There is positive correlation regarding the reasons for changing cropping pattern found in both the study villages, namely Valadi and Sevalur.

Table 6 The purpose of cultivation in both the Revenue villages

C No	Dumogo	Total No. of	Farmers	% to Total	
S.No	Purpose	Valadi	Sevalur	Valadi	Sevalur
1	Own Consumption	5	7	16.67	23.33
2	Fodder for Breeding animals	4	11	13.33	36.67
3	Commercial farming	15	10	50.00	33.33
4	Subsistence farming (selling)	6	2	20.00	6.67
	TOTAL	30	30	100.00	100.00

Source: Compiled from primary data.

The purpose of cultivation in both the revenue villages have found in Table 6. In Valadi village, the main purpose on impact of irrigation on cropping pattern is mainly due to commercial farming (i.e.) 50 per cent, for own consumption 16.67 per cent, 13.33 per cent for fodder for breeding animals and only 2 per cent is left out for subsistence farming. But, in case of Sevalur village, 36.67 per cent is cultivated mainly utilized for fodder for breeding animals (Goat, Sheep, Bullocks and Cow) and 6.67 per cent is for subsistence farming (Selling). So, the purpose of cultivation in both the study areas showed the negative rank correlation coefficient (Gopinath, 2020b). The calculated value of Rank correlation coefficient is -0.4 in both the study areas. That means, the farmers purpose is not fulfilled because of lack of irrigation facilities in both the revenue villages namely Valadi and Sevalur.

Table 7 The purpose of cultivation in both the Revenue villages

S.No	Course	Total No. of	Farmers	% to Total	
5.110	Source	Valadi	Sevalur	Valadi	Sevalur
1	Middlemen	12	18	40.00	60.00
2	Cooperative Society	8	0	26.67	0
3	Private Mandy	10	12	33.33	40.00
	TOTAL	30	30	100.00	100.00

Source: Compiled from primary data.

From the able 7, it is understood that the maximum source of selling access in both the revenue villages dominated by Middleman (i.e.) 40 per cent and 60 per cent respectively and followed by Private Mandy as 33.33 per cent 40 per cent respectively. And only in Valadi revenue village the farmers are selling their produce through cooperative society (i.e.) 26.67 per cent and it is not found in Sevalur village (Gopinath, 2020c).

Table 8 Monthly Rainfall for Trichirappalli District year 2018-2019

Period	Normal Rainfall	Actual Rainfall	% Deviation	
	Sout	h West Monsoon Period	<u>d</u>	
TOTAL	293.9	143.2	-51.28	
June – 2018	31.5	9.4	-70.2	
July – 2018	53.2	70.7	32.9	
August – 2018	73.8	5.8	-92.1	
September – 2018	135.4	57.3	-57.7	
	<u>1</u>	North East Monsoon		
TOTAL	391.5	208.1	-46.85	
October – 2018	173.2	78.3	-54.8	
November – 2018	139.9	124.0	-11.4	
December – 2018	78.4	5.8	-92.6	
		Winter – Period		
TOTAL	22.7	0.0	-100.00	
January – 2019	13.6	0.0	-100.00	
February – 2019	9.1	0.0	-100.00	
	H	ot – Weather Period		
TOTAL	109.9	31.8	-71.00	
March – 2019	11.8	0.0	-100.00	
April – 2019	38.4	9.4	-75.5	
May	59.7	22.4	-71.06	
ANNUAL TOTAL	818.0	383.1	-53.17	

 $Source: Indian\ Meteorological\ Department\ Chennai\ -6.$

Table 8 showed the monthly rainfall data for the year 2018-2019 of Trichirappalli District. Trichirappalli district mainly depend upon mainly East monsoon. (i.e.) North-East monsoon from the month of October 2018 – December 2018 (i.e). total of 391.5 (millimetres) But, overall total amount of rainfall is 818.0 (millimetres) in the year 2018-2019. So, the farmers are very happy to cultivate two or more that two crops under rotation to increase the yield per crop and also they started to cultivate short-duration crops also.

5. SUGGESTIONS

- Change the cropping pattern from one to more than two crops which consumes less quantity of water.
- Need of improvement of fertility of the soil.
- Provide drip irrigation system.
- Provide storage facility to store water during rainy seasons (October to December).
- Construct more number of water tanks for cultivation purposes.
- Clean the canals, ponds and wells to get adequate water and to get free flow of water, throughout the year.

6. CONCLUSION

From the present study it is understood that the impact of irrigation on cropping pattern depends upon so many factors such as Agro-climatic factors such as terrain, topography, slope, soils and socio-economic and political factors such as land ownership and use, size and type of land holding, labour and capital availability. And it is clear from the data that irrigation alone cannot increase agricultural output and bring about the descried shifts in the cropping pattern.

The reasons for changing cropping pattern have influenced the main factors as lack of irrigation and decline in yield of crop varieties. The purpose of cultivation have also been analysed. But, regarding the order of preference for the impact of irrigation on changing cropping pattern showed the positive rank correlation among farmers in both the revenue villages. Farmers have faced the problem of marketing because of the role played middleman in buying and selling of agricultural produce which is produced by them. So, it is concluded that there is an association between sources of irrigation and farmers which has the impact to change the cropping pattern in both the revenue villages namely Valadi and Sevalur of Trichirappalli district.

REFERENCES

- [1] Anita B, 2016, Impact assessment of Irrigation on cropping patter, food and nutrition on security at Macro and Micro level in Dharwad, Thesis submitted to university of Agricultural Sciences, Sharwed Karnataka State, India.
- [2] Chandrakant T. Pawar, 2015, Impact of irrigation (A regional perspective), Himalaya publishing house, Mumbai.
- [3] Crop data (2018- 2019), Statistical department, Tiruchirappalli.
- [4] Dhillon. S.S., 2015 Agricultural Geography, Tata McGraw hill publishing co, ltd, New Delhi.
- [5] Gopinath, R. & Shibu, N. S. (2014). A study on Performance Appraisal and Reward influencing Job Satisfaction with special reference to BSNL, Trichy SSA. *Research Explorer*, 1(1), *Spl. Issue*, 278-280.
- [6] Gopinath, R. (2014). Impact of Stress Management by Development of Emotional Intelligence in CMTS, BSNL, Tamil Nadu Circle A Study. *International Journal of Management Research and Development*, 4(1), 53-67
- [7] Gopinath, R. (2016a). Impact of HRD to Job Satisfaction with special reference to BSNL Employees in three different SSAs using SEM Model. *International Journal of Management*, 7(5), 1-9.

- [8] Gopinath, R. (2016b). Is Promotion and Transfer helps to Employee's Job Satisfaction? An Empirical Study at BSNL with special reference in three different SSAs using Modeling. *Asian Journal of Management Research*, 6(4), 277-285.
- [9] Gopinath, R. (2020a). Study on Relationship between Emotional Intelligence and Self-Actualization among Academicians of Tamil Nadu Universities. International Journal of Psychosocial Rehabilitation, 24(2), 5327 5337.
- [10] Gopinath, R. (2020b). An Investigation of the Relationship between Self-Actualization and Job Satisfaction of Academic Leaders. *International Journal of Management*, 11(8), 753-763.
- [11] Gopinath, R. (2020c). Self- Actualization and Job Involvement of Academic Leaders in Tamil Nadu Universities: A Relationship Study. NOVYI MIR Research Journal, 5(7), 58-69.
- [12] Gopinath, R., & Kalpana, R. (2020). Relationship of Job Involvement with Job Satisfaction. *Adalya Journal*, 9 (7), 306-315.
- [13] Gopinath, R., & Shibu, N. S. (2015a). A Study on Personal Factors influencing Job Satisfaction with special reference to BSNL, Trichy SSA. *Journal of Exclusive Management Science*, *Spl. Issue*, 147-151.
- [14] Gopinath, R., & Shibu, N. S. (2015b). A Study on Personal Factors influencing Job Satisfaction with special reference to BSNL, Trichy SSA. Journal of Exclusive Management Science, Spl. Issue, 147-151.
- [15] Mohammad Ali et el., (2007), —Fifty Years of Indian Agriculturell, Vol.2, Concept Publishing Company, New Delhi.
- [16] Seasonal rainfall data (2018 2019), Indian Meteorological Department Chennai.
- [17] Sule. B.M, 2014, "An impact of irrigation on Agricultural Productivity in Solapur district with to selected villages: A Geographical analysis, European Academic Research.
- [18] Vaidya B.C, 2017, Agricultural Land use in Indian, Money publication pvt. Ltd., New Delhi.
- [19] Yengoh, G. T., Armah, F. Ato, Onumah, E. Ebo, and Odoi, J. O., Trends in agriculturally-relevant rainfall characteristics for smallscale agriculture in Northern Ghana. J. Agric. Sci., 2010, 2(3), 3–16.